Phase sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Superconducting circuit quantum electrodynamics (QED) architecture composed of superconducting qubit and resonator is a powerful platform for exploring quantum physics and quantum information processing. By employing techniques developed for superconducting quantum computing, we experimentally investigate phase-sensitive Landau-Zener-Stückelberg (LZS) interference phenomena in a circuit QED. Our experiments cover a large range of LZS transition parameters, and demonstrate the LZS induced Rabi-like oscillation as well as phase-dependent steady-state population.