Nonequilibrium phases in hybrid arrays with flux qubits and NV centers
We propose a startling hybrid quantum architecture for simulating a
localization-delocalization transition. The concept is based on an array of
superconducting flux qubits which are coupled to a diamond crystal containing
nitrogen-vacancy (NV) centers. The underlying description is a
Jaynes-Cummings-lattice in the strong-coupling regime. However, in contrast to
well-studied coupled cavity arrays the interaction between lattice sites is
mediated here by the qubit rather than by the oscillator degrees of freedom.
Nevertheless, we point out that a transition between a localized and a
delocalized phase occurs in this system as well. We demonstrate the possibility
of monitoring this transition in a non-equilibrium scenario, including
decoherence effects. The proposed scheme allows the monitoring of
localization-delocalization transitions in Jaynes-Cummings-lattices by use of
currently available experimental technology. Contrary to cavity-coupled
lattices, our proposed recourse to stylized qubit networks facilitates (i) to
investigate localization-delocalization transitions in arbitrary dimensions and
(ii) to tune the inter-site coupling in-situ.