Listening to the quantum vacuum: a perspective on the dynamical Casimir effect
Modern quantum field theory has offered us a very intriguing picture of empty space. The vacuum state is no longer an inert, motionless state. We are instead dealing with an entity teeming with fluctuations that continuously produce virtual particles popping in and out of existence. The dynamical Casimir effect is a paradigmatic phenomenon, whereby these particles are converted into real particles (photons) by changing the boundary conditions of the field. It was predicted 50 years ago by Gerald T. Moore and it took more than 40 years until the first experimental verification.