Implementation of a transmon qubit using superconducting granular aluminum
The high kinetic inductance offered by granular aluminum (grAl) has recently been employed for linear inductors in superconducting high-impedance qubits and kinetic inductance detectors. Due to its large critical current density compared to typical Josephson junctions, its resilience to external magnetic fields, and its low dissipation, grAl may also provide a robust source of non-linearity for strongly driven quantum circuits, topological superconductivity, and hybrid systems. Having said that, can the grAl non-linearity be sufficient to build a qubit? Here we show that a small grAl volume (10×200×500nm3) shunted by a thin film aluminum capacitor results in a microwave oscillator with anharmonicity α two orders of magnitude larger than its spectral linewidth Γ01, effectively forming a transmon qubit. With increasing drive power, we observe several multi-photon transitions starting from the ground state, from which we extract α=2π×4.48MHz. Resonance fluorescence measurements of the |0>→|1> transition yield an intrinsic qubit linewidth γ=2π×10kHz, corresponding to a lifetime of 16μs. This linewidth remains below 2π×150kHz for in-plane magnetic fields up to ∼70mT.