Hyperinductance based on stacked Josephson junctions

  1. Paul Manset,
  2. José Palomo,
  3. Aurélien Schmitt,
  4. Kyrylo Gerashchenko,
  5. Rémi Rousseau,
  6. Himanshu Patange,
  7. Patrick Abgrall,
  8. Emmanuel Flurin,
  9. Samuel Deléglise,
  10. Thibaut Jacqmin,
  11. and Léo Balembois
Superinductances are superconducting circuit elements that combine a large inductance with a low parasitic capacitance to ground, resulting in a characteristic impedance exceeding the resistance quantum RQ=h/(2e)2≃6.45kΩ. In recent years, these components have become key enablers for emerging quantum circuit architectures. However, achieving high characteristic impedance while maintaining scalability and fabrication robustness remains a major challenge. In this work, we present two fabrication techniques for realizing superinductances based on vertically stacked Josephson junctions. Using a multi-angle Manhattan (MAM) process and a zero-angle (ZA) evaporation technique — in which junction stacks are connected pairwise using airbridges — we fabricate one-dimensional chains of stacks that act as high-impedance superconducting transmission lines. Two-tone microwave spectroscopy reveals the expected n‾√ scaling of the impedance with the number of junctions per stack. The chain fabricated using the ZA process, with nine junctions per stack, achieves a characteristic impedance of ∼16kΩ, a total inductance of 5.9μH, and a maximum frequency-dependent impedance of 50kΩ at 1.4 GHz. Our results establish junction stacking as a scalable, robust, and flexible platform for next-generation quantum circuits requiring ultra-high impedance environments.

leave comment