Generating higher order quantum dissipation from lower order parametric processes

  1. S. O. Mundhada,
  2. A. Grimm,
  3. S. Touzard,
  4. U. Vool,
  5. S. Shankar,
  6. M.H. Devoret,
  7. and M. Mirrahimi
Stabilization of quantum manifolds is at the heart of error-protected quantum information storage and manipulation. Nonlinear driven-dissipative processes achieve such stabilization in a hardware efficient manner. Josephson circuits with parametric pump drives implement these nonlinear interactions. In this article, we propose a scheme to engineer a four-photon drive and dissipation on a harmonic oscillator by cascading experimentally demonstrated two-photon processes. This would stabilize a four-dimensional degenerate manifold in a superconducting resonator. We analyze the performance of the scheme using numerical simulations of a realizable system with experimentally achievable parameters.

leave comment