Generating Entangled Microwave Radiation Over Two Transmission Lines
Using a superconducting circuit, the Josephson mixer, we demonstrate the
first experimental realization of spatially separated two-mode squeezed states
of microwave light. Driven by a pump tone, a first Josephson mixer generates,
out of quantum vacuum, a pair of entangled fields at different frequencies on
separate transmission lines. A second mixer, driven by a $pi$-phase shifted
copy of the first pump tone, recombines and disentangles the two fields. The
resulting output noise level is measured to be lower than for vacuum state at
the input of the second mixer, an unambiguous proof of entanglement. Moreover,
the output noise level provides a direct, quantitative measure of entanglement,
leading here to the demonstration of 6 Mebit.s$^{-1}$ (Mega entangled bits per
second) generated by the first mixer.