Flux-pulse-assisted Readout of a Fluxonium Qubit
Much attention has focused on the transmon architecture for large-scale superconducting quantum devices, however, the fluxonium qubit has emerged as a possible successor. With a shunting inductor in parallel to a Josephson junction, the fluxonium offers larger anharmonicity and stronger protection against dielectric loss, leading to higher coherence times as compared to conventional transmon qubits. The interplay between the inductive and Josephson energy potentials of the fluxonium qubit leads to a rich dispersive shift landscape when tuning the external flux. Here we propose to exploit the features in the dispersive shift to improve qubit readout. Specifically, we report on theoretical simulations showing improved readout times and error rates by performing the readout at a flux bias point with large dispersive shift. We expand the scheme to include different error channels, and show that flux-pulse-assisted readout offers 5 times improvement in signal to noise ratio after 200 ns integration time. Moreover, we show that the performance improvement persists in the presence of finite measurement efficiency combined with quasi-static flux noise. We suggest energy parameters for the fluxonium architecture that will allow for the implementation of our proposed flux-pulse-assisted readout scheme.