Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED

  1. Ming Hua,
  2. Ming-Jie Tao,
  3. and Fu-Guo Deng
Quantum stark effect on superconducting qubits in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a long-time state-selective rotation on the qubit. Here, we use the quantum resonance operations to construct the fast universal quantum gates on superconducting resonators in a microwave-photon quantum processor composed of some superconducting resonators coupled to a superconducting transmon, phase, or Xmon qutrit assisted by circuit QED in the dispersive regime, including the controlled-phase (c-phase) gate on two microwave-photon resonators and the controlled-controlled phase (cc-phase) gates on three microwave-photon resonators. Compared with previous works, our universal quantum gates have the higher fidelities and shorter operation times. The fidelity of our c-phase gate is 98.7% within the operation time of 40.1 ns and that of our cc-phase gate is 94.7% within 60 ns. Moreover, they do not require any drive field.

leave comment