Digital-analog quantum computing of fermion-boson models in superconducting circuits

  1. Shubham Kumar,
  2. Narendra N. Hegade,
  3. Enrique Solano,
  4. Francisco Albarrán-Arriagada,
  5. and Gabriel Alvarado Barrios
We propose a digital-analog quantum algorithm for simulating the Hubbard-Holstein model, describing strongly-correlated fermion-boson interactions, in a suitable architecture with superconducting circuits. It comprises a linear chain of qubits connected by resonators, emulating electron-electron (e-e) and electron-phonon (e-p) interactions, as well as fermion tunneling. Our approach is adequate for a digital-analog quantum computing (DAQC) of fermion-boson models including those described by the Hubbard-Holstein model. We show the reduction in the circuit depth of the DAQC algorithm, a sequence of digital steps and analog blocks, outperforming the purely digital approach. We exemplify the quantum simulation of a half-filling two-site Hubbard-Holstein model. In such example we obtain fidelities larger than 0.98, showing that our proposal is suitable to study the dynamical behavior of solid-state systems. Our proposal opens the door to computing complex systems for chemistry, materials, and high-energy physics.

leave comment