Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action

  1. Liu Qiu,
  2. Rishabh Sahu,
  3. William Hease,
  4. Georg Arnold,
  5. and Johannes M. Fink
Recent quantum technology advances have established precise quantum control of various microscopic systems involving optical, microwave, spin, and mechanical degrees of freedom. It is a timely challenge to realize hybrid quantum devices that leverage the full potential of each component. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. However, low coupling rates and excess back-action from the pump laser have precluded quantum optical control of superconducting circuits. Here we report the coherent control of a microwave cavity mode using laser light in a multimode device at millikelvin temperature with near unity cooperativity, as manifested by the observation of electro-optically induced transparency and absorption due to the electro-optical dynamical back-action. We show that both the stationary and instantaneous pulsed response of the microwave and optical modes comply with the coherent electro-optical interaction and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration represents a key step to attain full quantum control of microwave circuits using laser light, with possible applications ranging from optical quantum non-demolition measurements of microwave fields beyond the standard quantum limit, optical microwave ground state cooling and squeezing, to quantum transduction, entanglement generation and hybrid quantum networks.

leave comment