Analytical Quantum Full-Wave Solutions for a 3D Circuit Quantum Electrodynamics System

  1. Soomin Moon,
  2. Dong-Yeop Na,
  3. and Thomas E. Roth
High-fidelity general-purpose numerical methods are increasingly needed to improve superconducting circuit quantum information processor performance. One challenge in developing such numerical methods is the lack of reference data to validate them. To address this, we have designed a 3D system where all electromagnetic properties needed in a quantum analysis can be evaluated using analytical techniques from classical electromagnetic theory. Here, we review the basics of our field-based quantization method and then use these techniques to create the first-ever analytical quantum full-wave solution for a superconducting circuit quantum device. Specifically, we analyze a coaxial-fed 3D waveguide cavity with and without transmon quantum bits inside the cavity. We validate our analytical solutions by comparing them to numerical methods in evaluating single photon interference and computing key system parameters related to controlling quantum bits. In the future, our analytical solutions can be used to validate numerical methods, as well as build intuition about important quantum effects in realistic 3D devices.

leave comment