A superconducting qubit with noise-insensitive plasmon levels and decay-protected fluxon states

  1. Farid Hassani,
  2. Matilda Peruzzo,
  3. Lucky N. Kapoor,
  4. Andrea Trioni,
  5. Martin Zemlicka,
  6. and Johannes M. Fink
The inductively shunted transmon (IST) is a superconducting qubit with exponentially suppressed fluxon transitions and a plasmon spectrum approximating that of the transmon. It shares many characteristics with the transmon but offers charge offset insensitivity for all levels and precise flux tunability with quadratic flux noise suppression. In this work we propose and realize IST qubits deep in the transmon limit where the large geometric inductance acts as a mere perturbation. With a flux dispersion of only 5.1 MHz we reach the ’sweet-spot everywhere‘ regime of a SQUID device with a stable coherence time over a full flux quantum. Close to the flux degeneracy point the device reveals tunneling physics between the two quasi-degenerate ground states with typical observed lifetimes on the order of minutes. In the future, this qubit regime could be used to avoid leakage to unconfined transmon states in high-power read-out or driven-dissipative bosonic qubit realizations. Moreover, the combination of well controllable plasmon transitions together with stable fluxon states in a single device might offer a way forward towards improved qubit encoding schemes.

leave comment