A gate-tunable, field-compatible fluxonium

  1. Marta Pita-Vidal,
  2. Arno Bargerbos,
  3. Chung-Kai Yang,
  4. David J. van Woerkom,
  5. Wolfgang Pfaff,
  6. Nadia Haider,
  7. Peter Krogstrup,
  8. Leo P. Kouwenhoven,
  9. Gijs de Lange,
  10. and Angela Kou
Circuit quantum electrodynamics, where photons are coherently coupled to artificial atoms built with superconducting circuits, has enabled the investigation and control of macroscopic quantum-mechanical phenomena in superconductors. Recently, hybrid circuits incorporating semiconducting nanowires and other electrostatically-gateable elements have provided new insights into mesoscopic superconductivity. Extending the capabilities of hybrid flux-based circuits to work in magnetic fields would be especially useful both as a probe of spin-polarized Andreev bound states and as a possible platform for topological qubits. The fluxonium is particularly suitable as a readout circuit for topological qubits due to its unique persistent-current based eigenstates. In this Letter, we present a magnetic-field compatible hybrid fluxonium with an electrostatically-tuned semiconducting nanowire as its non-linear element. We operate the fluxonium in magnetic fields up to 1T and use it to observe the φ0-Josephson effect. This combination of gate-tunability and field-compatibility opens avenues for the exploration and control of spin-polarized phenomena using superconducting circuits and enables the use of the fluxonium as a readout device for topological qubits.

leave comment