A compact and tunable forward coupler based on high-impedance superconducting nanowires

  1. Marco Colangelo,
  2. Di Zhu,
  3. Daniel F. Santavicca,
  4. Brenden A. Butters,
  5. Joshua C. Bienfang,
  6. and Karl K. Berggren
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultra-compact microwave directional forward coupler based on high-impedance slow-wave superconducting-nanowire transmission lines. The coupling section of the fabricated device has a footprint of 416μm2. At 4.753 GHz, the input signal couples equally to the through port and forward-coupling port (50:50) at −6.7dB with −13.5dB isolation. The coupling ratio can be controlled with DC bias current or temperature by exploiting the dependence of the kinetic inductance on these quantities. The material and fabrication-process are suitable for direct integration with superconducting circuits, providing a practical solution to the signal distribution bottlenecks in developing large-scale quantum computers.

leave comment