3-Wave Mixing Josephson Dipole Element

  1. N. E. Frattini,
  2. U. Vool,
  3. S. Shankar,
  4. A. Narla,
  5. K. M. Sliwa,
  6. and M. H. Devoret
Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator (JRM), which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a pure three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a novel dipole circuit element with third-order nonlinearity, which implements three-wave mixing while minimizing harmful Kerr terms present in the JRM. Experimental results for a non-degenerate amplifier based on the proposed pure third-order nonlinearity are reported.

leave comment