10-qubit entanglement and parallel logic operations with a superconducting circuit

  1. Chao Song,
  2. Kai Xu,
  3. Wuxin Liu,
  4. Chuiping Yang,
  5. Shi-Biao Zheng,
  6. Hui Deng,
  7. Qiwei Xie,
  8. Keqiang Huang,
  9. Qiujiang Guo,
  10. Libo Zhang,
  11. Pengfei Zhang,
  12. Da Xu,
  13. Dongning Zheng,
  14. Xiaobo Zhu,
  15. H. Wang,
  16. Y.-A. Chen,
  17. C.-Y. Lu,
  18. Siyuan Han,
  19. and J.-W. Pan
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures, and pave the way to large-scale quantum computation.

leave comment