Error mitigation via stabilizer measurement emulation

  1. A. Greene,
  2. M. Kjaergaard,
  3. M. E. Schwartz,
  4. G. O. Samach,
  5. A. Bengtsson,
  6. M. O'Keeffe,
  7. D. K. Kim,
  8. M. Marvian,
  9. A. Melville,
  10. B. M. Niedzielski,
  11. A. Vepsalainen,
  12. R. Winik,
  13. J. Yoder,
  14. D. Rosenberg,
  15. S. Lloyd,
  16. T. P. Orlando,
  17. I. Marvian,
  18. S. Gustavsson,
  19. and W. D. Oliver
Dynamical decoupling (DD) is a widely-used quantum control technique that takes advantage of temporal symmetries in order to partially suppress quantum errors without the need resource-intensive
error detection and correction protocols. This and other open-loop error mitigation techniques are critical for quantum information processing in the era of Noisy Intermediate-Scale Quantum technology. However, despite its utility, dynamical decoupling does not address errors which occur at unstructured times during a circuit, including certain commonly-encountered noise mechanisms such as cross-talk and imperfectly calibrated control pulses. Here, we introduce and demonstrate an alternative technique – `quantum measurement emulation‘ (QME) – that effectively emulates the measurement of stabilizer operators via stochastic gate application, leading to a first-order insensitivity to coherent errors. The QME protocol enables error suppression based on the stabilizer code formalism without the need for costly measurements and feedback, and it is particularly well-suited to discrete coherent errors that are challenging for DD to address.

A Quantum Instruction Set Implemented on a Superconducting Quantum Processor

  1. M. Kjaergaard,
  2. M. E. Schwartz,
  3. A. Greene,
  4. G. O. Samach,
  5. A. Bengtsson,
  6. M. O'Keeffe,
  7. C. M. McNally,
  8. J. Braumüller,
  9. D. K. Kim,
  10. P. Krantz,
  11. M. Marvian,
  12. A. Melville,
  13. B. M. Niedzielski,
  14. Y. Sung,
  15. R. Winik,
  16. J. Yoder,
  17. D. Rosenberg,
  18. K. Obenland,
  19. S. Lloyd,
  20. T. P. Orlando,
  21. I. Marvian,
  22. S. Gustavsson,
  23. and W. D. Oliver
A quantum algorithm consists of a sequence of operations and measurements applied to a quantum processor. To date, the instruction set which defines this sequence has been provided
by a classical computer and passed via control hardware to the quantum processor. Here, we demonstrate the first experimental realization of a quantum instruction set, in which a fixed sequence of classically-defined gates perform an operation that is fully determined only by a quantum input to the fixed sequence. Specifically, we implement the density matrix exponentiation algorithm, which consumes N copies of the instruction state ρ to approximate the operation e−iρθ (θ an arbitrary angle). Our implementation relies on a 99.7\% fidelity controlled-phase gate between two superconducting transmon qubits. We achieve an average algorithmic fidelity ≈0.9, independent of the setting of ρ, to circuit depth nearly 90. This new paradigm for quantum instructions has applications to resource-efficient protocols for validating entanglement spectra, principal component analysis of large quantum states, and universal quantum emulation.

Rotating-frame relaxation as a noise spectrum analyzer of a superconducting qubit undergoing driven evolution

  1. F. Yan,
  2. S. Gustavsson,
  3. J. Bylander,
  4. X. Jin,
  5. F. Yoshihara,
  6. D. G. Cory,
  7. Y. Nakamura,
  8. T. P. Orlando,
  9. and W. D. Oliver
Gate operations in a quantum information processor are generally realized by tailoring specific periods of free and driven evolution of a quantum system. Unwanted environmental noise,
which may in principle be distinct during these two periods, acts to decohere the system and increase the gate error rate. While there has been significant progress characterizing noise processes during free evolution, the corresponding driven-evolution case is more challenging as the noise being probed is also extant during the characterization protocol. Here we demonstrate the noise spectroscopy (0.1 – 200 MHz) of a superconducting flux qubit during driven evolution by using a robust spin-locking pulse sequence to measure relaxation (T1rho) in the rotating frame. In the case of flux noise, we resolve spectral features due to coherent fluctuators, and further identify a signature of the 1MHz defect in a time-domain spin-echo experiment. The driven-evolution noise spectroscopy complements free-evolution methods, enabling the means to characterize and distinguish various noise processes relevant for universal quantum control.

The Flux Qubit Revisited

  1. F. Yan,
  2. S. Gustavsson,
  3. A. Kamal,
  4. J. Birenbaum,
  5. A. P. Sears,
  6. D. Hover,
  7. T.J. Gudmundsen,
  8. J.L. Yoder,
  9. T. P. Orlando,
  10. J. Clarke,
  11. A.J. Kerman,
  12. and W. D. Oliver
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication
of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and coherence times in excess of 40 us at its flux-insensitive point. Qubit relaxation times across 21 qubits of widely varying designs are consistently matched with a single model involving ohmic charge noise, quasiparticle fluctuations, resonator loss, and 1/f flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, reaching T2 ~ 80 us , approximately the 2T1 limit. In addition to realizing a dramatically improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary state-of-art qubits based on transverse qubit-resonator interaction.

Thermal and Residual Excited-State Population in a 3D Transmon Qubit

  1. X. Y. Jin,
  2. A. Kamal,
  3. A. P. Sears,
  4. T. Gudmundsen,
  5. D. Hover,
  6. J. Miloxi,
  7. R. Slattery,
  8. F. Yan,
  9. J. Yoder,
  10. T. P. Orlando,
  11. S. Gustavsson,
  12. and W. D. Oliver
We present a systematic study of the first excited-state population in a 3D transmon qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of
the protocol developed by Geerlings et al. [1], we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35-150 mK. Below 35 mK, the excited-state population saturates to 0.1%, near the resolution of our measurement. We verified this result using a flux qubit with ten-times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff} = 35 mK. Assuming T_{eff} is due solely to hot quasiparticles, the inferred qubit lifetime is 108 us and in plausible agreement with the measured 80 us.