Removing leakage-induced correlated errors in superconducting quantum error correction

  1. M. McEwen,
  2. D. Kafri,
  3. Z. Chen,
  4. J. Atalaya,
  5. K. J. Satzinger,
  6. C. Quintana,
  7. P. V. Klimov,
  8. D. Sank,
  9. C. Gidney,
  10. A. G. Fowler,
  11. F. Arute,
  12. K. Arya,
  13. B. Buckley,
  14. B. Burkett,
  15. N. Bushnell,
  16. B. Chiaro,
  17. R. Collins,
  18. S.Demura,
  19. A. Dunsworth,
  20. C. Erickson,
  21. B. Foxen,
  22. M. Giustina,
  23. T. Huang,
  24. S. Hong,
  25. E. Jeffrey,
  26. S. Kim,
  27. K. Kechedzhi,
  28. F. Kostritsa,
  29. P. Laptev,
  30. A. Megrant,
  31. X. Mi,
  32. J. Mutus,
  33. O. Naaman,
  34. M. Neeley,
  35. C. Neill,
  36. M.Niu,
  37. A. Paler,
  38. N. Redd,
  39. P. Roushan,
  40. T. C. White,
  41. J. Yao,
  42. P. Yeh,
  43. A. Zalcman,
  44. Yu Chen,
  45. V. N. Smelyanskiy,
  46. John M. Martinis,
  47. H. Neven,
  48. J. Kelly,
  49. A. N. Korotkov,
  50. A. G. Petukhov,
  51. and R. Barends
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation,
unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing.

Measurements of a quantum bulk acoustic resonator using a superconducting qubit

  1. M.-H. Chou,
  2. É. Dumur,
  3. Y. P. Zhong,
  4. G. A. Peairs,
  5. A. Bienfait,
  6. H.-S. Chang,
  7. C. R. Conner,
  8. J. Grebel,
  9. R. G. Povey,
  10. K. J. Satzinger,
  11. and A. N. Cleland
Phonon modes at microwave frequencies can be cooled to their quantum ground state using conventional cryogenic refrigeration, providing a convenient way to study and manipulate quantum
states at the single phonon level. Phonons are of particular interest because mechanical deformations can mediate interactions with a wide range of different quantum systems, including solid-state defects, superconducting qubits, as well as optical photons when using optomechanically-active constructs. Phonons thus hold promise for quantum-focused applications as diverse as sensing, information processing, and communication. Here, we describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency that at cryogenic temperatures displays large electromechanical coupling strength combined with a high intrinsic mechanical quality factor Qi≈4.3×104. Using a recently-developed flip-chip technique, we couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system. This approach promises a facile and flexible experimental approach to quantum acoustics and hybrid quantum systems.

Diabatic gates for frequency-tunable superconducting qubits

  1. R. Barends,
  2. C. M. Quintana,
  3. A. G. Petukhov,
  4. Yu Chen,
  5. D. Kafri,
  6. K. Kechedzhi,
  7. R. Collins,
  8. O. Naaman,
  9. S. Boixo,
  10. F. Arute,
  11. K. Arya,
  12. D. Buell,
  13. B. Burkett,
  14. Z. Chen,
  15. B. Chiaro,
  16. A. Dunsworth,
  17. B. Foxen,
  18. A. Fowler,
  19. C. Gidney,
  20. M. Giustina,
  21. R. Graff,
  22. T. Huang,
  23. E. Jeffrey,
  24. J. Kelly,
  25. P. V. Klimov,
  26. F. Kostritsa,
  27. D. Landhuis,
  28. E. Lucero,
  29. M. McEwen,
  30. A. Megrant,
  31. X. Mi,
  32. J. Mutus,
  33. M. Neeley,
  34. C. Neill,
  35. E. Ostby,
  36. P. Roushan,
  37. D. Sank,
  38. K. J. Satzinger,
  39. A. Vainsencher,
  40. T. White,
  41. J. Yao,
  42. P. Yeh,
  43. A. Zalcman,
  44. H. Neven,
  45. V. N. Smelyanskiy,
  46. and John M. Martinis
We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)⋅10−3 in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing
the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

Phonon-mediated quantum state transfer and remote qubit entanglement

  1. A. Bienfait,
  2. K. J. Satzinger,
  3. Y. P. Zhong,
  4. H.-S. Chang,
  5. M.-H. Chou,
  6. C. R. Conner,
  7. E. Dumur,
  8. J. Grebel,
  9. G. A. Peairs,
  10. R. G. Povey,
  11. and A. N. Cleland
Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Recent experiments have shown that
superconducting qubits can control and detect individual phonons in a resonant structure, enabling the coherent generation and measurement of complex stationary phonon states. Here, we report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2 mm-long acoustic quantum communication channel, equivalent to a 500 ns delay line, we demonstrate the emission and re-capture of a phonon by one qubit; quantum state transfer between two qubits with a 67\% efficiency; and, by partial transfer of a phonon between two qubits, generation of an entangled Bell pair with a fidelity of FB=84±1 %

Violating Bell’s inequality with remotely-connected superconducting qubits

  1. Y. P. Zhong,
  2. H.-S. Chang,
  3. K. J. Satzinger,
  4. M.-H. Chou,
  5. A. Bienfait,
  6. C. R. Conner,
  7. É. Dumur,
  8. J. Grebel,
  9. G. A. Peairs,
  10. R. G. Povey,
  11. D.I. Schuster,
  12. and A. N. Cleland
Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, due to entanglement’s key role in achieving and verifying secure communications.
Remote entanglement has been realized using a number of different probabilistic schemes, but deterministic remote entanglement has only recently been demonstrated, using a variety of superconducting circuit approaches. However, the deterministic violation of a Bell inequality, a strong measure of quantum correlation, has not to date been demonstrated in a superconducting quantum communication architecture, in part because achieving sufficiently strong correlation requires fast and accurate control of the emission and capture of the entangling photons. Here we present a simple and scalable architecture for achieving this benchmark result in a superconducting system.