Stimulated Raman adiabatic passage in a three-level superconducting circuit

  1. K. S. Kumar,
  2. A. Vepsalainen,
  3. S. Danilin,
  4. and G. S. Paraoanu
The adiabatic manipulation of quantum states is a powerful technique that has opened up new directions in quantum engineering, enabling tests of fundamental concepts such as the Berry phase and its nonabelian generalization, the observation of topological transitions, and holds the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage process for circuit quantum electrodynamics, by using the first three levels of a transmon qubit. We demonstrate a population transfer efficiency above 80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses coupled to the first and second transition. The advantage of this techniques is robustness against errors in the timing of the control pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time-domain. We also show that this protocol can be reversed by applying a third adiabatic pulse on the first transition. Furthermore, we demonstrate a hybrid adiabatic-nonadiabatic gate using a fast pulse followed by the adiabatic Raman sequence, and we study experimentally the case of a quasi-degenerate intermediate level.

leave comment