Diabatic gates for frequency-tunable superconducting qubits

  1. R. Barends,
  2. C. M. Quintana,
  3. A. G. Petukhov,
  4. Yu Chen,
  5. D. Kafri,
  6. K. Kechedzhi,
  7. R. Collins,
  8. O. Naaman,
  9. S. Boixo,
  10. F. Arute,
  11. K. Arya,
  12. D. Buell,
  13. B. Burkett,
  14. Z. Chen,
  15. B. Chiaro,
  16. A. Dunsworth,
  17. B. Foxen,
  18. A. Fowler,
  19. C. Gidney,
  20. M. Giustina,
  21. R. Graff,
  22. T. Huang,
  23. E. Jeffrey,
  24. J. Kelly,
  25. P. V. Klimov,
  26. F. Kostritsa,
  27. D. Landhuis,
  28. E. Lucero,
  29. M. McEwen,
  30. A. Megrant,
  31. X. Mi,
  32. J. Mutus,
  33. M. Neeley,
  34. C. Neill,
  35. E. Ostby,
  36. P. Roushan,
  37. D. Sank,
  38. K. J. Satzinger,
  39. A. Vainsencher,
  40. T. White,
  41. J. Yao,
  42. P. Yeh,
  43. A. Zalcman,
  44. H. Neven,
  45. V. N. Smelyanskiy,
  46. and John M. Martinis
We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)⋅10−3 in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

leave comment