Comparing and combining measurement-based and driven-dissipative entanglement stabilization

  1. Yehan Liu,
  2. Shyam Shankar,
  3. Nissim Ofek,
  4. Michael Hatridge,
  5. Anirudh Narla,
  6. Katrina Sliwa,
  7. Luigi Frunzio,
  8. Robert J. Schoelkopf,
  9. and Michel H. Devoret
We demonstrate and contrast two approaches to the stabilization of qubit entanglement by feedback. Our demonstration is built on a feedback platform consisting of two superconducting qubits coupled to a cavity which are measured by a nearly-quantum-limited measurement chain and controlled by high-speed classical logic circuits. This platform is used to stabilize entanglement by two nominally distinct schemes: a „passive“ reservoir engineering method and an „active“ correction based on conditional parity measurements. In view of the instrumental roles that these two feedback paradigms play in quantum error-correction and quantum control, we directly compare them on the same experimental setup. Further, we show that a second layer of feedback can be added to each of these schemes, which heralds the presence of a high-fidelity entangled state in realtime. This „nested“ feedback brings about a marked entanglement fidelity improvement without sacrificing success probability.

leave comment