I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me

14
Jul
2019

# Superconducting qubits beyond the dispersive regime

Superconducting circuits consisting of a few low-anharmonic transmons coupled to readout and bus resonators can perform basic quantum computations. Since the number of qubits in such

circuits is limited to not more than a few tens, the qubits can be designed to operate within the dispersive regime, where frequency detuning are much stronger than coupling strengths. However, scaling up the number of qubits will bring the circuit out of this regime and invalidates current theories. We develop a formalism that allows to consistently diagonalize superconducting circuit hamiltonian beyond dispersive regime. This will allow to study qubit-qubit interaction unperturbatively, therefore our formalism remains valid and accurate at small or even negligible frequency detuning; thus our formalism serves as a theoretical ground for designing qubit characteristics for scaling up the number of qubits in superconducting circuits. We study the most important circuits with single- and two-qubit gates, i.e. a single transmon coupled to a resonator and two transmons sharing a bus resonator. Surprisingly our formalism allows to determine the circuit characteristics, such as dressed frequencies and Kerr couplings, in closed-form formulas that not only reproduce perturbative results but also extrapolate beyond the dispersive regime and can ultimately reproduce (and even modify) the Jaynes-Cumming results at resonant frequencies.

09
Jul
2019

# Probing many-body localization phase transition with superconducting circuits

Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered

and interacting chains of superconducting transmon devices, we study the bosonic many-body localization phase transition using the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of transition separating the ergodic and the many-body localized phases as a function of the disorder strength and the many-body on-site interaction strength. The main difference between the bosonic model realized by superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger due to the possibility of multiple excitations occupying the same site. The phase transition is found to be robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we calculate experimentally relevant local observables and show that their temporal fluctuations can be used to distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While we consider unitary dynamics, neglecting the effects of dissipation, decoherence and measurement back action, the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a promising platform for exploring localization physics and phase transition.

# Rabi oscillations in a superconducting nanowire circuit

We investigate the circuit quantum electrodynamics of superconducting nanowire oscillators. The sample circuit consists of a capacitively shunted nanowire with a width of about 20 nm

and a varying length up to 350 nm, capacitively coupled to an on-chip resonator. By applying microwave pulses we observe Rabi oscillations, measure coherence times and the anharmonicity of the circuit. Despite the very compact design, simple top-down fabrication and high degree of disorder in the oxidized (granular) aluminum material used, we observe lifetimes in the microsecond range.

05
Jul
2019

# Quantum dynamics of quasicharge in an ultrahigh-impedance superconducting circuit

Josephson effect is usually taken for granted because quantum fluctuations of the superconducting phase-difference are stabilized by the low-impedance embedding circuit. To realize

the opposite regime, we shunt a weak Josephson junction with a nearly ideal kinetic inductance, whose microwave impedance largely exceeds the resistance quantum, reaching above 160 kOhm. Such an extraordinary value is achieved with an optimally designed Josephson junction chain released off the substrate to minimize the stray capacitance. The low-energy spectrum of the resulting free-standing superconducting loop spectacularly loses magnetic flux sensitivity, explained by replacing the junction with a 2e-periodic in charge capacitance. This long-predicted quantum non-linearity dramatically expands the superconducting electronics toolbox with applications to metrology and quantum information

04
Jul
2019

# Diabatic gates for frequency-tunable superconducting qubits

We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)⋅10−3 in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing

the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

02
Jul
2019

# Coupling microwave photons to a mechanical resonator using quantum interference

In recent years, the field of microwave optomechanics has emerged as leading platform for achieving quantum control of macroscopic mechanical objects. Implementations of microwave optomechanics

to date have coupled microwave photons to mechanical resonators using a moving capacitance. While simple and effective, the capacitive scheme suffers from inherent and practical limitations on the maximum achievable coupling strength. Here, we experimentally implement a fundamentally different approach: flux-mediated optomechanical coupling. In this scheme, mechanical displacements modulate the flux in a superconducting quantum interference device (SQUID) that forms the inductor of a microwave resonant circuit. We demonstrate that this flux-mediated coupling can be tuned in-situ by the magnetic flux in the SQUID, enabling nanosecond flux tuning of the optomechanical coupling. Tuning the external in-plane magnetic transduction field, we observe a linear scaling of the single-photon coupling strength, reaching rates comparable to the current state-of-the-art. Finally, this linear scaling is predicted to overcome the limits of single-photon coupling rates in capacitive optomechanics, opening the door for a new generation of groundbreaking optomechanical experiments in the single-photon strong coupling regime.

01
Jul
2019

# Chiral quantum optics in photonic sawtooth lattices

Chiral quantum optics has become a burgeoning field due to its potential applications in quantum networks or quantum simulation of many-body physics. Current implementations are based

on the interplay between local polarization and propagation direction of light in nanophotonic structures. In this manuscript, we propose an alternative platform based on coupling quantum emitters to a photonic \emph{sawtooth} lattice, a one-dimensional model with an effective flux per plaquette introduced by complex tunnelings. We study the dynamics emerging from such structured photonic bath and find the conditions to obtain quasi-perfect directional emission when the emitters are resonant with the band. In addition, we find that the photons in this bath can also mediate complex emitter-emitter interactions tunable in range and phase when the emitters transition frequencies lie within a band-gap. Since these effects do not rely on polarization they can be observed in platforms beyond nanophotonics such as matter-waves or circuit QED ones, of which we discuss a possible implementation.

28
Jun
2019

# Characterizing dielectric properties of ultra-thin films using superconducting coplanar microwave resonators

We present an experimental approach for cryogenic dielectric measurements on ultra-thin insulating films. Based on a coplanar microwave waveguide design we implement superconducting

quarter-wave resonators with inductive coupling, which allows us to determine the real part ε1 of the dielectric function at GHz frequencies and for sample thicknesses down to a few nm. We perform simulations to optimize resonator coupling and sensitivity, and we demonstrate the possibility to quantify ε1 with a conformal mapping technique in a wide sample-thickness and ε1-regime. Experimentally we determine ε1 for various thin-film samples (photoresist, MgF2, and SiO2) in the thickness regime of nm up to μm. We find good correspondence with nominative values and we identify the precision of the film thickness as our predominant error source. Additionally we demonstrate a measurement of ε1(T) vs. temperature for a SrTiO3 bulk sample, using an in-situ reference method to compensate for the temperature dependence of the superconducting resonator properties.

27
Jun
2019

# Fast control of dissipation in a superconducting resonator

We report on fast tunability of an electromagnetic environment coupled to a superconducting coplanar waveguide resonator. Namely, we utilize a recently-developed quantum-circuit refrigerator

(QCR) to experimentally demonstrate a dynamic tunability in the total damping rate of the resonator up to almost two orders of magnitude. Based on the theory it corresponds to a change in the internal damping rate by nearly four orders of magnitude. The control of the QCR is fully electrical, with the shortest implemented operation times in the range of 10 ns. This experiment constitutes a fast active reset of a superconducting quantum circuit. In the future, a similar scheme can potentially be used to initialize superconducting quantum bits.

# Frequency Fluctuations in Tunable Superconducting Microwave Cavities

We present a model for measurements of the scattering matrix elements of tunable microwave cavities in the presence of resonant frequency fluctuations induced by fluctuations in the

tuning parameter. We apply this model to the specific case of a two-sided cavity and find an analytic expression for the average scattering matrix elements. A key signature of this `fluctuating model‘ is a subtle deformation of the trajectories swept out by scattering matrix elements in the complex plane. We apply this model to experimental data and report a direct observation of this deformation in the data. Despite this signature, we show that the fluctuating and non-fluctuating models are qualitatively similar enough to be mistaken for one another, especially in the presence of measurement noise. However, if one applies the non-fluctuating model to data for which frequency fluctuations are significant then one will find damping rates that appear to depend on the tuning parameter, which is a common observation in tunable superconducting microwave cavities. We propose this model as both a potential explanation of and remedy to this apparent phenomenon.