I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me

05
Apr
2018

# Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control

parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the $(\ket{0},\ket{2})$ subspace of a three-level transmon fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the $(\ket{0},\ket{2})$ subspace.

26
Mrz
2018

# A tunable coupling scheme for implementing high-fidelity two-qubit gates

The prospect of computational hardware with quantum advantage relies critically on the quality of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achieving

scalable quantum information processors. Here, we propose a generalizable and extensible scheme for a two-qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies.

21
Mrz
2018

# Dissipation by normal-metal traps in transmon qubits

Quasiparticles are an intrinsic source of relaxation and decoherence for superconducting qubits. Recent works have shown that normal-metal traps may be used to evacuate quasiparticles,

and potentially improve the qubit life time. Here, we investigate how far the normal metals themselves may introduce qubit relaxation. We identify the ohmic losses inside the normal metal and the tunnelling current through the normal metal-superconductor interface as the relevant relaxation mechanisms. We show that the ohmic loss contribution depends strongly on the device and trap geometry, as a result of the inhomogeneous electric fields in the qubit. The correction of the quality factor due to the tunnelling current on the other hand is highly sensitive to the nonequilibrium distribution function of the quasiparticles. Overall, we show that even when choosing less than optimal parameters, the presence of normal-metal traps does not affect the quality factor of state-of-the-art qubits.

17
Mrz
2018

# Two-color electromagnetically induced transparency via modulated coupling between a mechanical resonator and a qubit

We discuss level splitting and sideband transitions induced by a modulated coupling between a superconducting quantum circuit and a nanomechanical resonator. First, we show how to achieve

an unconventional time-dependent longitudinal coupling between a flux (transmon) qubit and the resonator. Considering a sinusoidal modulation of the coupling strength, we find that a first-order sideband transition can be split into two. Moreover, under the driving of a red-detuned field, we discuss the optical response of the qubit for a resonant probe field. We show that level splitting induced by modulating this longitudinal coupling can enable two-color electromagnetically induced transparency (EIT), in addition to single-color EIT. In contrast to standard predictions of two-color EIT in atomic systems, we apply here only a single drive (control) field. The monochromatic modulation of the coupling strength is equivalent to employing two eigenfrequency-tunable mechanical resonators. Both drive-probe detuning for single-color EIT and the distance between transparent windows for two-color EIT, can be adjusted by tuning the modulation frequency of the coupling.

13
Mrz
2018

# Scalable 3D quantum memory

Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well controlled environment for superconducting qubits. In order to realize at the same time fast

readout and long-lived quantum information storage, one can couple the qubit both to a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. The external coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a Z-fidelity of 82%. We also find that this enhancement is not limited by fundamental constraints.

# Input-output theory for superconducting and photonic circuits that contain weak retro-reflections and other weak pseudo-cavities

Input-output theory is invaluable for treating superconducting and photonic circuits connected by transmission lines or waveguides. However, this theory cannot in general handle situations

in which retro-reflections from circuit components or configurations of beam-splitters create loops for the traveling-wave fields that connect the systems. Here, building upon the network-contraction theory of Gough and James [Commun. Math. Phys. 287, 1109 (2009)], we provide a compact and powerful method to treat any circuit that contains such loops so long as the effective cavities formed by the loops are sufficiently weak. Essentially all present-day on-chip superconducting and photonic circuits will satisfy this weakness condition so long as the reflectors that form the loops are not especially highly reflecting. As an example we analyze the problem of transmitting entanglement between two qubits connected by a transmission line with imperfect circulators, a problem for which the new method is essential. We obtain a full solution for the optimal receiver given that the sender employs a simple turn on/turn off. This solution shows that near-perfect transmission is possible even with significant retro-reflections.

12
Mrz
2018

# Electromagnetic models for multilayer superconducting transmission lines

Thin-film superconducting transmission lines play important roles in many signal transmission and detection systems, including qubit coupling and read-out schemes, electron spin resonance

systems, parametric amplifiers, and various ultra high sensitivity detectors. Here we present a rigorous method for computing the electromagnetic behaviour of superconducting microstrip transmission lines and coplanar waveguides. Our method is based on conformal mapping, and is suitable for both homogeneous superconductors and proximity-coupled multilayers. We also present an effective conductivity approximation of multilayers, thereby allowing the multilayers to be analysed using existing electromagnetic design software. We compute the numerical results for Al-Ti bilayers and discuss the validity of our full computation and homogeneous approximation.

# Circuit QED-based measurement of vortex lattice order in a Josephson junction array

Superconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature state

of the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii–Kosterlitz–Thouless (BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an external magnetic field is added, the effective spins of the XY model become frustrated, leading to the formation of topological defects (vortices). Here we observe the many-body dynamics of such an array, including frustration, via its coupling to a superconducting microwave cavity. We take the design of the transmon qubit, but replace the single junction between two antenna pads with the complete array. This allows us to probe the system at 10 mK with minimal self-heating by using weak coherent states at the single (microwave) photon level to probe the resonance frequency of the cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array.

06
Mrz
2018

# Observation of topological phenomena in a programmable lattice of 1,800 qubits

The celebrated work of Berezinskii, Kosterlitz and Thouless in the 1970s revealed exotic phases of matter governed by topological properties of low-dimensional materials such as thin

films of superfluids and superconductors. Key to this phenomenon is the appearance and interaction of vortices and antivortices in an angular degree of freedom—typified by the classical XY model—due to thermal fluctuations. In the 2D Ising model this angular degree of freedom is absent in the classical case, but with the addition of a transverse field it can emerge from the interplay between frustration and quantum fluctuations. Consequently a Kosterlitz-Thouless (KT) phase transition has been predicted in the quantum system by theory and simulation. Here we demonstrate a large-scale quantum simulation of this phenomenon in a network of 1,800 in situ programmable superconducting flux qubits arranged in a fully-frustrated square-octagonal lattice. Essential to the critical behavior, we observe the emergence of a complex order parameter with continuous rotational symmetry, and the onset of quasi-long-range order as the system approaches a critical temperature. We use a simple but previously undemonstrated approach to statistical estimation with an annealing-based quantum processor, performing Monte Carlo sampling in a chain of reverse quantum annealing protocols. Observations are consistent with classical simulations across a range of Hamiltonian parameters. We anticipate that our approach of using a quantum processor as a programmable magnetic lattice will find widespread use in the simulation and development of exotic materials.

05
Mrz
2018

# Experimental demonstration of Pauli-frame randomization on a superconducting qubit

The realization of quantum computing’s promise despite noisy imperfect qubits relies, at its core, on the ability to scale cheaply through error correction and fault-tolerance.

While fault-tolerance requires relatively mild assumptions about the nature of the errors, the overhead associated with coherent and non-Markovian errors can be orders of magnitude larger than the overhead associated with purely stochastic Markovian errors. One proposal, known as Pauli frame randomization, addresses this challenge by randomizing the circuits so that the errors are rendered incoherent, while the computation remains unaffected. Similarly, randomization can suppress couplings to slow degrees of freedom associated with non-Markovian evolution. Here we demonstrate the implementation of circuit randomization in a superconducting circuit system, exploiting a flexible programming and control infrastructure to achieve this with low effort. We use high-accuracy gate-set tomography to demonstrate that without randomization the natural errors experienced by our experiment have coherent character, and that with randomization these errors are rendered incoherent. We also demonstrate that randomization suppresses signatures of non-Markovianity evolution to statistically insignificant levels. This demonstrates how noise models can be shaped into more benign forms for improved performance.