I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me

13
Nov
2019

# Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime

We propose a scheme for controlling a radio-frequency mechanical resonator at the quantum level using a superconducting qubit. The mechanical part of the circuit consists of a suspended

micrometer-long beam that is embedded in the loop of a superconducting quantum interference device (SQUID) and is connected in parallel to a transmon qubit. Using realistic parameters from recent experiments with similar devices, we show that this configuration can enable a tuneable optomechanical interaction in the single-photon ultrastrong-coupling regime, where the radiation-pressure coupling strength is larger than both the transmon decay rate and the mechanical frequency. We investigate the dynamics of the driven system for a range of coupling strengths and find an optimum regime for ground-state cooling, consistent with previous theoretical investigations considering linear cavities. Furthermore, we numerically demonstrate a protocol for generating hybrid discrete- and continuous-variable entanglement as well as mechanical Schrödinger cat states, which can be realised within the current state of the art. Our results demonstrate the possibility of controlling the mechanical motion of massive objects using superconducting qubits at the single-photon level and could enable applications in hybrid quantum technologies as well as fundamental tests of quantum mechanics.

12
Nov
2019

# A long-lived capacitively shunted flux qubit embedded in a 3D cavity

We report the experimental realization of a 3D capacitively-shunt superconducting flux qubit with long coherence times. At the optimal flux bias point, the qubit demonstrates energy

relaxation times in the 60-90 μs range, and Hahn-echo coherence time of about 80 μs which can be further improved by dynamical decoupling. Qubit energy relaxation can be attributed to quasiparticle tunneling, while qubit dephasing is caused by flux noise away from the optimal point. Our results show that 3D c-shunt flux qubits demonstrate improved performance over other types of flux qubits which is advantageous for applications such as quantum magnetometry and spin sensing.

11
Nov
2019

# Low power, fast and broadband ESR quantum control using a stripline resonator

Using a home-built Ku band ESR spectrometer equipped with an arbitrary waveform generator and a stripline resonator, we implement two types of pulses that would benefit quantum computers:

BB1 composite pulse and a microwave frequency comb. Broadband type 1 (BB1) composite pulse is commonly used to combat systematic errors but previous experiments were carried out only on extremely narrow linewidth samples. Using a sample with a linewidth of 9.35 MHz, we demonstrate that BB1 composite pulse is still effective against pulse length errors at a Rabi frequency of 38.46 MHz. The fast control is realized with low microwave power which is required for initialization of electron spin qubits at 0.6 T. We also digitally design and implement a microwave frequency comb to excite multiple spin packets of a different sample. Using this pulse, we demonstrate coherent and well resolved excitations spanning over the entire spectrum of the sample (ranging from -20 to 20 MHz). In anticipation of scaling up to a system with large number of qubits, this approach provides an efficient technique to selectively and simultaneously control multiple qubits defined in the frequency-domain.

06
Nov
2019

# Implementation of a transmon qubit using superconducting granular aluminum

The high kinetic inductance offered by granular aluminum (grAl) has recently been employed for linear inductors in superconducting high-impedance qubits and kinetic inductance detectors.

Due to its large critical current density compared to typical Josephson junctions, its resilience to external magnetic fields, and its low dissipation, grAl may also provide a robust source of non-linearity for strongly driven quantum circuits, topological superconductivity, and hybrid systems. Having said that, can the grAl non-linearity be sufficient to build a qubit? Here we show that a small grAl volume (10×200×500nm3) shunted by a thin film aluminum capacitor results in a microwave oscillator with anharmonicity α two orders of magnitude larger than its spectral linewidth Γ01, effectively forming a transmon qubit. With increasing drive power, we observe several multi-photon transitions starting from the ground state, from which we extract α=2π×4.48MHz. Resonance fluorescence measurements of the |0>→|1> transition yield an intrinsic qubit linewidth γ=2π×10kHz, corresponding to a lifetime of 16μs. This linewidth remains below 2π×150kHz for in-plane magnetic fields up to ∼70mT.

# Microscopic charging and in-gap states in superconducting granular aluminum

Following the emergence of superconducting granular aluminum (grAl) as a material for high-impedance quantum circuits, future development hinges on a microscopic understanding of its

phase diagram, and whether the superconductor-to-insulator transition (SIT) is driven by disorder or charging effects. Beyond fundamental relevance, these mechanisms govern noise and dissipation in microwave circuits. Although the enhancement of the critical temperature, and the SIT in granular superconductors have been studied for more than fifty years, experimental studies have so far provided incomplete information on the microscopic phenomena. Here we present scanning tunneling microscope measurements of the local electronic structure of superconducting grAl. We confirm an increased superconducting gap in individual grains both near and above the Mott resistivity ρM≈400 μΩcm. Above ρM we find Coulomb charging effects, a first indication for decoupling, and in-gap states on individual grains, which could contribute to flux noise and dielectric loss in quantum devices. We also observe multiple low-energy states outside the gap, which may indicate bosonic excitations of the superconducting order parameter.

04
Nov
2019

# Photon-Pressure Strong-Coupling between two Superconducting Circuits

The nonlinear, parametric coupling between two harmonic oscillators has been used in the field of optomechanics for breakthrough experiments regarding the control and detection of mechanical

resonators. Although this type of interaction is an extremely versatile resource and not limited to coupling light fields to mechanical resonators, there have only been, very few reports of implementing it within other systems so far. Here, we present a device consisting of two superconducting LC circuits, parametrically coupled to each other by a magnetic flux-tunable photon-pressure interaction. We observe dynamical backaction between the two circuits, photon-pressure-induced transparency and absorption, and enter the parametric strong-coupling regime, enabling switchable and controllable coherent state transfer between the two modes. As result of the parametric interaction, we are also able to amplify and observe thermal current fluctuations in a radio-frequency LC circuit close to its quantum ground-state. Due to the high design flexibility and precision of superconducting circuits and the large single-photon coupling rate, our approach will enable new ways to control and detect radio-frequency photons and allow for experiments in parameter regimes not accessible to other platforms with photon-pressure interaction.

# Quantum thermal transistor in superconducting circuits

Logical devices based on electrical currents are ubiquitous in modern society. However, digital logic does have some drawbacks such as a relatively high power consumption. It is therefore

of great interest to seek alternative means to build logical circuits that can either work as stand-alone devices or in conjunction with more traditional electronic circuits. One direction that holds great promise is the use of heat currents for logical components. In the present paper, we discuss a recent abstract proposal for a quantum thermal transistor and provide a concrete design of such a device using superconducting circuits. Using a circuit quantum electrodynamics Jaynes-Cummings model, we propose a three-terminal device that allows heat transfer from source to drain, depending on the temperature of a bath coupled at the gate modulator, and show that it provides similar properties to a conventional semiconductor transistor.

03
Nov
2019

# Hybrid spin-superconducting quantum circuit mediated by deterministically prepared entangled photonic states

In hybrid quantum systems a controllable coupling can be obtained by mediating the interactions with dynamically introduced photons. We propose a hybrid quantum architecture consisting

of two nitrogen vacancy center ensembles coupled to a tunable flux qubit; that are contained on the transmission line of a multimode nonlinear superconducting coplanar waveguide resonator with an appended Josephson mixing device. We discuss using entangled propagating microwaves photons, which through our nonlinear wave-mixing procedure are made into macroscopically distinct quantum states. We use these states to steer the system and show that with further amplification we can create a similar photonic state, which has a more distinct reduction of its uncertainty. Furthermore, we show that all of this leads to a lengthened coherence time, a reasonable fidelity which decays to 0.94 and then later increases upward to stabilize at 0.6 as well as a strengthened entanglement.

01
Nov
2019

# A tunable High-Q millimeter wave cavity for hybrid circuit and cavity QED experiments

The millimeter wave (mm-wave) frequency band provides exciting prospects for quantum science and devices, since many high-fidelity quantum emitters, including Rydberg atoms, molecules

and silicon vacancies, exhibit resonances near 100 GHz. High-Q resonators at these frequencies would give access to strong interactions between emitters and single photons, leading to rich and unexplored quantum phenomena at temperatures above 1K. We report a 3D mm-wave cavity with a measured single-photon internal quality factor of 3×107 and mode volume of 0.14×λ3 at 98.2 GHz, sufficient to reach strong coupling in a Rydberg cavity QED system. An in-situ piezo tunability of 18 MHz facilitates coupling to specific atomic transitions. Our unique, seamless and optically accessible resonator design is enabled by the realization that intersections of 3D waveguides support tightly confined bound states below the waveguide cutoff frequency. Harnessing the features of our cavity design, we realize a hybrid mm-wave and optical cavity, designed for interconversion and entanglement of mm-wave and optical photons using Rydberg atoms.

28
Okt
2019

# Structural and Nanochemical Properties of AlOx Layers in Al/AlOx/Al-Layer Systems for Josephson Junctions

The structural and nanochemical properties of thin AlOx layers are decisive for the performance of advanced electronic devices. For example, they are frequently used as tunnel barriers

in Josephson junction-based superconducting devices. However, systematic studies of the influence of oxidation parameters on structural and nanochemical properties are rare up to now, as most studies focus on the electrical properties of AlOx layers. This study aims to close this gap by applying transmission electron microscopy in combination with electron energy loss spectroscopy to analyze the structural and nanochemical properties of differently fabricated AlOx layers and correlate them with fabrication parameters. With respect to the application of AlOx as tunnel barrier in superconducting Josephson junctions, Al/AlOx/Al-layer systems were deposited on Si substrates. We will show that the oxygen content and structure of amorphous AlOx layers is strongly dependent on the fabrication process and oxidation parameters. Dynamic and static oxidation of Al yields oxygen-deficient amorphous AlOx layers, where the oxygen content ranges from x = 0.5 to x = 1.3 depending on oxygen pressure and substrate temperature. Thicker layers of stoichiometric crystalline γ−Al2O3 layers were grown by electron-beam evaporation of Al2O3 and reactive sputter deposition.