of superconducting qubits using a tunable broadband Purcell filter, effectively resolving the fundamental trade-off between measurement speed and photon-noise-induced dephasing. By dynamically tuning the filter parameters, we suppress photon-noise-induced dephasing by a factor of 7 in idle status, while enabling rapid, high-fidelity readout in measurement status. We achieve 99.6\% single-shot readout fidelity with 100~ns readout pulse, limited primarily by relaxation errors during readout. Using a multilevel readout protocol, we further attain 99.9\% fidelity in 50~ns. Simultaneous readout of three qubits using 100~ns pulses achieves an average fidelity of 99.5\% with low crosstalk. Additionally, the readout exhibits high quantum-nondemolition (QND) performance: 99.4\% fidelity over repeated measurements and a low leakage rate below 0.1\%. Building on the tunable broadband filter, we further propose a scalable readout scheme for surface code QEC with enhanced multiplexing capability, offering a promising solution for fast and scalable QEC.
High-performance multiplexed readout of superconducting qubits with a tunable broadband Purcell filter
Fast, high-fidelity, and low back-action readout plays a crucial role in the advancement of quantum error correction (QEC). Here, we demonstrate high-performance multiplexed readout