Parametric Phase Modulation in Superconducting Circuits

  1. Zhuang Ma,
  2. Xianke Li,
  3. Hongyi Shi,
  4. Ruonan Guo,
  5. Jianwen Xu,
  6. Xinsheng Tan,
  7. and Yang Yu
Parametric modulation is widely employed in superconducting circuits for quantum simulations and high-fidelity two-qubit gates, valued for its versatility. Conventionally, the qubit
coupling strength is determined by the amplitude of the parametric flux pulse, which affects qubit parameters dramatically. In this article, we propose and implement a phase modulation scheme to tune the interaction strength via adjusting the relative phase between the parametric flux pulses applied to two coupled qubits. We characterize this modulation for sideband couplings, at both sweet and offsweet spots, achieving a broad range of coupling strengths as confirmed by both population dynamics and spectroscopy methods. This approach enables phase-controlled modulation of coupling strength, providing a promising candidate for parametrically driven quantum simulations and gate operations.

Experimental Implementation of Noncyclic and Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit

  1. Zhuang Ma,
  2. Jianwen Xu,
  3. Tao Chen,
  4. Yu Zhang,
  5. Wen Zheng,
  6. Dong Lan,
  7. Zheng-Yuan Xue,
  8. Xinsheng Tan,
  9. and Yang Yu
Quantum gates based on geometric phases possess intrinsic noise-resilience features and therefore attract much attention. However, the implementations of previous geometric quantum
computation typically require a long pulse time of gates. As a result, their experimental control inevitably suffers from the cumulative disturbances of systematic errors due to excessive time consumption. Here, we experimentally implement a set of noncyclic and nonadiabatic geometric quantum gates in a superconducting circuit, which greatly shortens the gate time. And also, we experimentally verify that our universal single-qubit geometric gates are more robust to both the Rabi frequency error and qubit frequency shift-induced error, compared to the conventional dynamical gates, by using the randomized benchmarking method. Moreover, this scheme can be utilized to construct two-qubit geometric operations, while the generation of the maximally entangled Bell states is demonstrated. Therefore, our results provide a promising routine to achieve fast, high-fidelity, and error-resilient quantum gates in superconducting quantum circuits.