circuits and optical or atomic systems would enable new functionalities but has been hindered by the tremendous energy mismatch of ∼105 and the resulting mutually imposed loss and noise. In this work we create and verify entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we deterministically prepare an itinerant microwave-optical state that is squeezed by 0.72+0.31−0.25\,dB and violates the Duan-Simon separability criterion by >5 standard deviations. This establishes the long-sought non-classical correlations between superconducting circuits and telecom wavelength light with wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing and cross-platform verification.
Entangling microwaves with optical light
Entanglement is a genuine quantum mechanical property and the key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave