of logical errors through code scaling remains a critical challenge. Erasure qubits, which enable hardware-level detection of dominant error types, offer a promising path toward resource-efficient QEC by exploiting error bias. Single erasure qubits with dual-rail encoding in superconducting cavities and transmons have demonstrated high coherence and low single-qubit gate errors with mid-circuit erasure detection, but the generation of multi-qubit entanglement–a fundamental requirement for quantum computation and error correction–has remained an outstanding milestone. Here, we demonstrate a superconducting processor integrating four dual-rail erasure qubits that achieves the logical multi-qubit entanglement with error-biased protection. Each dual-rail qubit, encoded in pairs of tunable transmons, preserves millisecond-scale coherence times and single-qubit gate errors at the level of 10−5. By engineering tunable couplings between logical qubits, we generate high-fidelity entangled states resilient to physical qubit noise, including logical Bell states (98.8% fidelity) and a three-logical-qubit Greenberger-Horne-Zeilinger (GHZ) state (93.5% fidelity). A universal gate set is realized through a calibrated logical controlled-NOT (CNOT) gate with 96.2% process fidelity, enabled by coupler-activated XX interactions in the protected logical subspace. This work advances dual-rail architectures beyond single-qubit demonstrations, providing a blueprint for concatenated quantum error correction with erasure qubits.
Logical multi-qubit entanglement with dual-rail superconducting qubits
Recent advances in quantum error correction (QEC) across hardware platforms have demonstrated operation near and beyond the fault-tolerance threshold, yet achieving exponential suppression