data qubits, introducing additional errors and limiting fault-tolerance. In superconducting quantum circuits, Kerr-cat qubits (KCQs), which exhibit strongly biased noise, have been proposed as ancillas to suppress this back-action and enhance QEC performance. Here, we experimentally demonstrate a beamsplitter interaction between a KCQ and a transmon, realizing an effective σzσx coupling that can be employed for parity measurements in QEC protocols. We characterize the interaction across a range of cat sizes and drive amplitudes, confirming the expected scaling of the interaction rate. These results establish a step towards hybrid architectures that combine transmons as data qubits with noise-biased bosonic ancillas, enabling hardware-efficient syndrome extraction and advancing the development of fault-tolerant quantum processors.
Experimental signatures of a σzσx beam-splitter interaction between a Kerr-cat and transmon qubit
Quantum error correction (QEC) requires ancilla qubits to extract error syndromes from data qubits which store quantum information. However, ancilla errors can propagate back to the