negatively-curved spaces. For instance, recent developments in hyperbolic band theory have unveiled the emergence of higher-dimensional eigenstates — features fundamentally absent in conventional Euclidean systems. At the same time, superconducting quantum circuits have emerged as a leading platform for quantum analogue emulations and digital simulations in scalable architectures. Here, we introduce a scalable superconducting circuit framework for the analogue quantum emulation of tight-binding models on hyperbolic and kagome-like lattices. Using this approach, we experimentally realize three distinct lattices, including, for the first time to our knowledge, a hyperbolic lattice whose unit cell resides on a genus-3 Riemann surface. Our method encodes the hyperbolic metric directly into capacitive couplings between high-quality superconducting resonators, enabling tenable reproduction of spectral and localization properties while overcoming major scalability and spectral resolution limitations of previous designs. These results set the stage for large-scale experimental studies of hyperbolic materials in condensed matter physics and lay the groundwork for realizing hyperbolic quantum processors, with potential implications for both fundamental physics and quantum computing
A Scalable Superconducting Circuit Framework for Emulating Physics in Hyperbolic Space
Theoretical studies and experiments in the last six years have revealed the potential for novel behaviours and functionalities in device physics through the synthetic engineering of