Thermal and Residual Excited-State Population in a 3D Transmon Qubit

  1. X. Y. Jin,
  2. A. Kamal,
  3. A. P. Sears,
  4. T. Gudmundsen,
  5. D. Hover,
  6. J. Miloxi,
  7. R. Slattery,
  8. F. Yan,
  9. J. Yoder,
  10. T. P. Orlando,
  11. S. Gustavsson,
  12. and W. D. Oliver
We present a systematic study of the first excited-state population in a 3D transmon qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of
the protocol developed by Geerlings et al. [1], we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35-150 mK. Below 35 mK, the excited-state population saturates to 0.1%, near the resolution of our measurement. We verified this result using a flux qubit with ten-times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff} = 35 mK. Assuming T_{eff} is due solely to hot quasiparticles, the inferred qubit lifetime is 108 us and in plausible agreement with the measured 80 us.

Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits

  1. Z. R. Lin,
  2. K. Inomata,
  3. K. Koshino,
  4. W. D. Oliver,
  5. Y. Nakamura,
  6. J. S. Tsai,
  7. and T. Yamamoto
The parametric phase-locked oscillator (PPLO), also known as a parametron, is a resonant circuit in which one of the reactances is periodically modulated. It can detect, amplify, and
store binary digital signals in the form of two distinct phases of self-oscillation. Indeed, digital computers using PPLOs based on a magnetic ferrite ring or a varactor diode as its fundamental logic element were successfully operated in 1950s and 1960s. More recently, basic bit operations have been demonstrated in an electromechanical resonator, and an Ising machine based on optical PPLOs has been proposed. Here, using a PPLO realized with Josephson-junction circuitry, we demonstrate the demodulation of a microwave signal digitally modulated by binary phase-shift keying. Moreover, we apply this demodulation capability to the dispersive readout of a superconducting qubit. This readout scheme enables a fast and latching-type readout, yet requires only a small number of readout photons in the resonator to which the qubit is coupled, thus featuring the combined advantages of several disparate schemes. We have achieved high-fidelity, single-shot, and non-destructive qubit readout with Rabi-oscillation contrast exceeding 90%, limited primarily by the qubit’s energy relaxation.

Microwave Down-Conversion with an Impedance-Matched Λ System in Driven Circuit QED

  1. K. Inomata,
  2. K. Koshino,
  3. Z. R. Lin,
  4. W. D. Oliver,
  5. J. S. Tsai,
  6. Y. Nakamura,
  7. and T. Yamamoto
By driving a dispersively coupled qubit-resonator system, we realize an „impedance-matched“ Λ system that has two identical radiative decay rates from the top level and
interacts with a semi-infinite waveguide. It has been predicted that a photon input from the waveguide deterministically induces a Raman transition in the system and switches its electronic state. We confirm this through microwave response to a continuous probe field, observing near-perfect (99.7%) extinction of the reflection and highly efficient (74%) frequency down-conversion. These proof-of-principle results lead to deterministic quantum gates between material qubits and microwave photons and open the possibility for scalable quantum networks interconnected with waveguide photons.

Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier

  1. Z. R. Lin,
  2. K. Inomata,
  3. W. D. Oliver,
  4. K. Koshino,
  5. Y. Nakamura,
  6. J. S. Tsai,
  7. and T. Yamamoto
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing
of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.