Field-Dependent Qubit Flux Noise Simulated from Materials-Specific Disordered Exchange Interactions Between Paramagnetic Adsorbates

  1. Keith G. Ray,
  2. Yaniv Rosen,
  3. Jonathan L Dubois,
  4. and Vincenzo Lordi
Superconducting quantum devices, from qubits and magnetometers to dark matter detectors, are influenced by magnetic flux noise originating from paramagnetic surface defects and impurities.
These spin systems can feature complex dynamics, including a Berezinskii-Kosterlitz-Thouless transition, that depend on the lattice, interactions, external fields, and disorder. However, the disorder included in typical models is not materials-specific, diminishing the ability to accurately capture measured flux noise phenomena. We present a first principles-based simulation of a spin lattice consisting of paramagnetic O2 molecules on an Al2O3 surface, a likely flux noise source in superconducting qubits, to elucidate opportunities to mitigate flux noise. We simulate an ensemble of surface adsorbates with disordered orientations and calculate the orientation-dependent exchange couplings using density functional theory. Thus, our spin simulation has no free parameters or assumed functional form of the disorder, and captures correlation in the defect landscape that would appear in real systems. We calculate a range of exchange interactions between electron pairs, with the smallest values, 0.016 meV and -0.023 meV, being in the range required to act as a two-level system and couple to GHz resonators. We calculate the flux noise frequency, temperature, and applied external magnetic field dependence, as well as the susceptibility-flux noise cross-correlation. Calculated trends agree with experiment, demonstrating that a surface harboring paramagnetic adsorbates arranged with materials-specific disorder and interactions captures the various properties of magnetic flux noise observed in superconducting circuits. In addition, we find that an external electric field can tune the spin-spin interaction strength and reduce magnetic flux noise.

Simulating noise on a quantum processor: interactions between a qubit and resonant two-level system bath

  1. Yujin Cho,
  2. Dipti Jasrasaria,
  3. Keith G. Ray,
  4. Daniel M. Tennant,
  5. Vincenzo Lordi,
  6. Jonathan L DuBois,
  7. and Yaniv J. Rosen
Material defects fundamentally limit the coherence times of superconducting qubits, and manufacturing completely defect-free devices is not yet possible. Therefore, understanding the
interactions between defects and a qubit in a real quantum processor design is essential. We build a model that incorporates the standard tunneling model, the electric field distributions in the qubit, and open quantum system dynamics and draw from the current understanding of two-level system (TLS) theory. Specifically, we start with one million TLSs distributed on the surface of a qubit and pick the 200 highest coupling systems. We then perform a full Lindbladian simulation that explicitly includes the coherent coupling between the qubit and the TLS bath to model the time dependent density matrix of resonant TLS defects and the qubit. We find that the 200 most strongly coupled TLSs can accurately describe the qubit energy relaxation time. This work confirms that resonant TLSs located in areas where the electric field is strong can significantly affect the qubit relaxation time, even if they are located far from the Josephson junction. Similarly, a strongly-coupled resonant TLS located in the Josephson junction does not guarantee a reduced qubit relaxation time if a more strongly coupled TLS is far from the Josephson junction. In addition to the coupling strengths between TLSs and the qubit, the model predicts that the geometry of the device and the TLS relaxation time play a significant role in qubit dynamics. Our work can provide guidance for future quantum processor designs with improved qubit coherence times.