A Low-Noise and High-Stability DC Source for Superconducting Quantum Circuits
With the rapid scaling of superconducting quantum processors, electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density,power consumption, and crosstalk mitigation. Here we present a custom dual-channel direct current (DC) source module (QPower) dedicated for large-scale superconducting quantum processors. The module delivers a voltage range of ±7 V with 200 mA maximum current per channel, while achieving the following key performance benchmarks: noise spectral density of 20 nV/Hz‾‾‾√ at 10 kHz, output ripple <500 μVpp within 20 MHz bandwidth, and long-term voltage drift <5 μVpp over 12 hours. Integrated into the control electronics of a 66-qubit quantum processor, QPower enables qubit coherence times of T1=87.6 μs and Ramsey T2=5.1 μs, with qubit resonance frequency drift constrained to ±40 kHz during 12-hour operation. This modular design is compact in size and efficient in energy consumption, providing a scalable DC source solution for intermediate-scale quantum processors with stringent noise and stability requirements, with potential extensions to other quantum hardware platforms and precision measurement.[/expand]