Cat qubits, for which logical |0⟩ and |1⟩ are coherent states |±α⟩ of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantageso that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number |α|2. Large two-photon dissipation rate κ2 ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate κ2/2π≈2 MHz. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between |α⟩ and |−α⟩ can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active.
Detectors of propagating microwave photons have recently been realized using superconducting circuits. However a number-resolved photocounter is still missing. In this letter, we demonstratea single-shot counter for propagating microwave photons that can resolve up to 3 photons. It is based on a pumped Josephson Ring Modulator that can catch an arbitrary propagating mode by frequency conversion and store its quantum state in a stationary memory mode. A transmon qubit then counts the number of photons in the memory mode using a series of binary questions. Using measurement based feedback, the number of questions is minimal and scales logarithmically with the maximal number of photons. The detector features a detection efficiency of 0.96±0.04, and a dark count probability of 0.030±0.002 for an average dead time of 4.5 μs. To maximize its performance, the device is first used as an \emph{in situ} waveform detector from which an optimal pump is computed and applied. Depending on the number of incoming photons, the detector succeeds with a probability that ranges from 56% to 99%.
The evolution of quantum systems under measurement is a central aspect of quantum mechanics. When a two level system — a qubit — is used as a probe of a larger system, itnaturally leads to answering a single yes-no question about the system state followed by its corresponding quantum collapse. Here, we report an experiment where a single superconducting qubit is counter-intuitively able to answer not a single but nine yes-no questions about the number of photons in a microwave resonator at the same time. The key ingredients are twofold. First, we exploit the fact that observing the color of a qubit carries additional information to the conventional readout of its state. The qubit-system interaction is hence designed so that the qubit color encodes the number of photons in the resonator. Secondly, we multiplex the qubit color observation by recording how the qubit reflects a frequency comb. Interestingly the amount of extracted information reaches a maximum at a finite drive amplitude of the comb. We evidence it by direct Wigner tomography of the quantum state of the resonator. Our experiment unleashes the full potential of quantum meters by bringing the measurement process in the frequency domain.
A quantum system interacts with its environment, if ever so slightly, no matter how much care is put into isolating it. As a consequence, quantum bits (qubits) undergo errors, puttingdauntingly difficult constraints on the hardware suitable for quantum computation. New strategies are emerging to circumvent this problem by encoding a qubit non-locally across the phase space of a physical system. Since most sources of decoherence are due to local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality. Prominent examples are topological qubits which delocalize quantum information over real space and where spatial extent measures non-locality. In this work, we encode a qubit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs. This process pins down two computational states to separate locations in phase space. As we increase this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate. Since bit-flips are continuously and autonomously corrected at the single qubit level, only phase-flips are left to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with non-linear dissipation are promising building blocks for universal fault-tolerant quantum computation with drastically reduced hardware overhead.
We present a superconducting device that realizes the sequential measurement of a transmon qubit. The unitary evolution between system and probe is indeed separated in time and spacefrom the measurement of the probe itself. The device disables common limitations of dispersive readout such as Purcell effect or transients in the cavity mode by tuning the coupling to the measurement channel on demand. The probe is initially stored in a memory mode and coupled to the qubit until a microwave pump releases it into an output line in a characteristic time as low as 10 ns, which is 400 times shorter than the memory lifetime. The Wigner function of the memory allows us to characterize the non-Gaussian nature of the probe and its dynamics. A direct measurement of the released probe field quadratures demonstrates a readout fidelity of 97.5 % in a total measurement time of 220 ns.