The formalism allows us to determine complete physical pictures of equilibrium properties in the circuit quantum electrodynamics (cQED) architectures with high-impedance waveguides, which have recently become accessible in experiments. We point out that nonperturbative effects can trigger breakdown of the supposedly effective descriptions, such as the spin-boson and boundary sine-Gordon models, and lead to qualitatively new phase diagrams. The origin of the failure of conventional understandings is traced to strong renormalizations of circuit parameters at low-energy scales. Our results indicate that a nonperturbative analysis is essential for a comprehensive understanding of cQED platforms consisting of superconducting circuits and long high-impedance transmission lines.
Functional Renormalization Group Approach to Circuit Quantum Electrodynamics
A nonperturbative approach is developed to analyze superconducting circuits coupled to quantized electromagnetic continuum within the framework of the functional renormalization group.