Superconducting travelling wave parametric amplifiers (TWPAs) are broadband near-quantum limited microwave amplifiers commonly used for qubit readout and a wide range of other applicationsin quantum technologies. The performance of these amplifiers depends on achieving impedance matching to minimise reflected signals. Here we apply a microwave calibration technique to extract the S-parameters of a Josephson junction based TWPA in-operando. This enables reflections occurring at the TWPA and its extended network of components to be quantified, and we find that the in-operation performance can be well described by the off-state measured S-parameters.
A major issue for the implementation of large scale superconducting quantum circuits is the interaction with interfacial two-level system defects (TLS) that leads to qubit relaxationand impedes qubit operation in certain frequency ranges that also drift in time. Another major challenge comes from non-equilibrium quasiparticles (QPs) that result in qubit dephasing and relaxation. In this work we show that such QPs can also serve as a source of TLS. Using spectral and temporal mapping of TLS-induced fluctuations in frequency tunable resonators, we identify a subset of the general TLS population that are highly coherent TLS with a low reconfiguration temperature ∼ 300 mK, and a non-uniform density of states. These properties can be understood if these TLS are formed by QPs trapped in shallow subgap states formed by spatial fluctutations of the superconducting order parameter Δ. Magnetic field measurements of one such TLS reveals a link to superconductivity. Our results imply that trapped QPs can induce qubit relaxation.
Noise and decoherence due to spurious two-level systems (TLS) located at material interfaces is a long-standing issue in solid state quantum technologies. Efforts to mitigate the effectsof TLS have been hampered by a lack of surface analysis tools sensitive enough to identify their chemical and physical nature. Here we measure the dielectric loss, frequency noise and electron spin resonance (ESR) spectrum in superconducting resonators and demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the frequency noise. We provide experimental evidence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and demonstrates their coupling via the electric-field degree of freedom to the resonator, causing dielectric (charge) noise in solid state quantum devices.
We report on a device that integrates eight superconducting transmon qubits in lambda/4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexingarchitecture, each resonator and qubit can be addressed individually thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.
It is universally accepted that noise and decoherence affecting the performance of superconducting quantum circuits are consistent with the presence of spurious two-level systems (TLS).In recent years bulk defects have been generally ruled out as the dominant source, and the search has focused on surfaces and interfaces. Despite a wide range of theoretical models and experimental efforts, the origin of these surface TLS still remains largely unknown, making further mitigation of TLS induced decoherence extremely challenging. Here we use a recently developed on-chip electron spin resonance (ESR) technique that allows us to detect spins with a very low surface coverage. We combine this technique with various surface treatments specifically to reveal the nature of native surface spins on Al2O3 — the mainstay of almost all solid state quantum devices. On a large number of samples we resolve three ESR peaks with the measured total paramagnetic spin density n=2.2×1017m−2, which matches the density inferred from the flux noise in SQUIDs. We show that two of these peaks originate from physisorbed atomic hydrogen which appears on the surface as a by-product of water dissociation. We suggest that the third peak is due to molecular oxygen on the Al2O3 surface captured at strong Lewis base defect sites, producing charged O−2. These results provide important information towards the origin of charge and flux noise in quantum circuits. Our findings open up a whole new approach to identification and controlled reduction of paramagnetic sources of noise in solid state quantum devices.
We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths,exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-St\“uckelberg (LZS) interference structure of a longitudinally driven two-level system. For even stronger drives we observe a significant change in the LZS pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.