In this work, we study a series of tunable flux qubits inductively coupled to a coplanar waveguide resonator fabricated on a sapphire substrate. Each qubit includes an asymmetric superconductingquantum interference device which is controlled by the application of an external magnetic field and acts as a tunable Josephson junction. The tunability of the qubits is typically ±3.5 GHz around their central gap frequency. The measured relaxation times are limited by dielectric losses in the substrate and can attain T1∼8μs. The echo dephasing times are limited by flux noise even at optimal points and reach T2E∼4μs, almost an order of magnitude longer than state of the art for tunable flux qubits.
Superconducting flux qubits are promising candidates for the physical realization of a scalable quantum processor. Indeed, these circuits may have both a small decoherence rate anda large anharmonicity. These properties enable the application of fast quantum gates with high fidelity and reduce scaling limitations due to frequency crowding. The major difficulty of flux qubits‘ design consists of controlling precisely their transition energy – the so-called qubit gap – while keeping long and reproducible relaxation times. Solving this problem is challenging and requires extremely good control of e-beam lithography, oxidation parameters of the junctions and sample surface. Here we present measurements of a large batch of flux qubits and demonstrate a high level of reproducibility and control of qubit gaps, relaxation times and pure echo dephasing times. These results open the way for potential applications in the fields of quantum hybrid circuits and quantum computation.