are needed which combine arrays of many qubits with selective qubit control and readout, without compromising on coherence. Here we present a coaxial circuit QED architecture in which qubit and resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided by coaxial wiring running perpendicular to the chip plane. We present characterisation measurements of a fabricated device in good agreement with simulated parameters and demonstrating energy relaxation and dephasing times of T1=4.1μs and T2=5.7μs respectively. The architecture allows for scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring being out of the plane.
Double-sided coaxial circuit QED with out-of-plane wiring
Superconducting circuits are well established as a strong candidate platform for the development of quantum computing. In order to advance to a practically useful level, architectures