Exchanging energy below the superconducting gap introduces quasiparticle energy distributions in superconducting quantum circuits, which will be responsible for their decoherence. Thisstudy examines the impact of quasiparticle energy on the performance of NbN superconducting microwave coplanar waveguide resonators on silicon chips. We measured the resonance frequency and internal quality factor in response to temperature sweeps to evaluate the effect of quasiparticle dynamics. Moreover, by calculating the complex conductivity of the NbN film, we identified the contribution of quasiparticle density to the experimental results.
In this work, we present a numerical model specifically designed for 3D multilayer devices, with a focus on nanobridge junctions and coplanar waveguides. Unlike existing numerical models,ours does not approximate the physical layout or limit the number of constituent materials, providing a more accurate and flexible design tool. We calculate critical currents, current phase relationships, and the energy gap where relevant. We validate our model by comparing it with published data. Through our analysis, we found that using multilayer films significantly enhances control over these quantities. For nanobridge junctions in particular, multilayer structures improve qubit anharmonicity compared to monolayer junctions, offering a substantial advantage for qubit performance. For coated multilayer microwave circuits it allows for better studies of the proximity effect, including their effective kinetic inductance.