Searching topological states of matter in tunable artificial systems has recently become a rapidly growing field of research. Meanwhile, significant experimental progresses on observingtopological phenomena have been made in superconducting circuits. However, topological insulator states have not yet been reported in this system. Here, for the first time, we experimentally realize a spin version of the Su-Schrieffer-Heeger model and observe the topological magnon insulator states in a superconducting qubit chain, which manifest both topological invariants and topological edge states. Based on simply monitoring the time evolution of a singlequbit excitation in the chain, we demonstrate that the topological winding numbers and the topological magnon edge and soliton states can all be directly observed. Our work thus opens a new avenue to use controllable qubit chain system to explore novel topological states of matter and also offers exciting possibilities for topologically protected quantum information processing.
Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum information processing. Here we present an experimentally feasible scheme for robust QST via topologicallyprotected edge states in superconducting circuits. Using superconducting X-mon qubits with tunable couplings, the generalized Su-Schrieffer-Heeger models with topological magnon bands can be constructed. A novel entanglement-dependent topological Thouless pumping can be directly observed in this system. More importantly, we show that single-qubit states and entanglement can be robustly transferred with high fidelity in the presence of qubit-coupling imperfection, which is a hallmark of topological protection. This approach is experimentally applicable to a variety of quantum systems.
Circuit QED on a chip has become a powerful platform for simulating complex many-body physics. In this report, we realize a Dicke-Ising model with an antiferromagnetic nearest-neighborspin-spin interaction in circuit QED with a superconducting qubit array. We show that this system exhibits a competition between the collective spin-photon interaction and the antiferromagnetic nearest-neighbor spin-spin interaction, and then predict four quantum phases, including: a paramagnetic normal phase, an antiferromagnetic normal phase, a paramagnetic superradiant phase, and an antiferromagnetic superradiant phase. The antiferromagnetic normal phase and the antiferromagnetic superradiant phase are new phases in many-body quantum optics. In the antiferromagnetic superradiant phase, both the antiferromagnetic and superradiant orders can coexist, and thus the system possesses $Z_{2}^{z}\otimes Z_{2}$\ symmetry. Moreover, we find an unconventional photon signature in this phase. In future experiments, these predicted quantum phases could be distinguished by detecting both the mean-photon number and the magnetization.