amount of intentional frequency detuning (disorder) is required to protect individual qubit states against the destabilizing effects of nonlinear resonator coupling. Here we investigate the stability of this variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors of two different types, those using untunable qubits (IBM type) and those using tunable qubits (Delft/Google type). Applying three independent diagnostics of localization theory – a Kullback-Leibler analysis of spectral statistics, statistics of many-body wave functions (inverse participation ratios), and a Walsh transform of the many-body spectrum – we find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
Transmon platform for quantum computing challenged by chaotic fluctuations
From the perspective of many body physics, the transmon qubit architectures currently developed for quantum computing are systems of coupled nonlinear quantum resonators. A significant