Electron paramagnetic resonance spectroscopy using a single artificial atom

  1. Hiraku Toida,
  2. Yuichiro Matsuzaki,
  3. Kosuke Kakuyanagi,
  4. Xiaobo Zhu,
  5. William J. Munro,
  6. Hiroshi Yamaguchi,
  7. and Shiro Saito
Electron paramagnetic resonance (EPR) spectroscopy is an important technology in physics, chemistry, materials science, and biology. Sensitive detection with a small sample volume is

Characteristic spectra of circuit quantum electrodynamics systems from the ultrastrong to the deep strong coupling regime

  1. Fumiki Yoshihara,
  2. Tomoko Fuse,
  3. Sahel Ashhab,
  4. Kosuke Kakuyanagi,
  5. Shiro Saito,
  6. and Kouichi Semba
We report on spectra of circuit quantum electrodynamics (QED) systems in an intermediate regime that lies between the ultrastrong and deep strong coupling regimes, which have been reported

Superradiance with an ensemble of superconducting flux qubits

  1. Neill Lambert,
  2. Yuichiro Matsuzaki,
  3. Kosuke Kakuyanagi,
  4. Natsuko Ishida,
  5. Shiro Saito,
  6. and Franco Nori
Superconducting flux qubits are a promising candidate for realizing quantum information processing and quantum simulations. Such devices behave like artificial atoms, with the advantage

Observation of collective coupling between an engineered ensemble of macroscopic artificial atoms and a superconducting resonator

  1. Kosuke Kakuyanagi,
  2. Yuichiro Matsuzaki,
  3. Corentin Deprez,
  4. Hiraku Toida,
  5. Kouichi Semba,
  6. Hiroshi Yamaguchi,
  7. William J. Munro,
  8. and Shiro Saito
The hybridization of distinct quantum systems is now seen as an effective way to engineer the properties of an entire system leading to applications in quantum metamaterials, quantum

Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime

  1. Fumiki Yoshihara,
  2. Tomoko Fuse,
  3. Sahel Ashhab,
  4. Kosuke Kakuyanagi,
  5. Shiro Saito,
  6. and Kouichi Semba
To control light-matter interaction at the single-quantum level in cavity quantum electrodynamics (cavity-QED) or circuit-QED, strong coupling between the light and matter components

Improving the lifetime of the NV center ensemble coupled with a superconducting flux qubit by applying magnetic fields

  1. Yuichiro Matsuzaki,
  2. Xiaobo Zhu,
  3. Kosuke Kakuyanagi,
  4. Hiraku Toida,
  5. Takaaki Shimooka,
  6. Norikazu Mizuochi,
  7. Kae Nemoto,
  8. Kouichi Semba,
  9. W. J. Munro,
  10. Hiroshi Yamaguchi,
  11. and Shiro Saito
One of the promising systems to realize quantum computation is a hybrid system where a superconducting flux qubit plays a role of a quantum processor and the NV center ensemble is used

Ising interaction between capacitively-coupled superconducting flux qubits

  1. Takahiko Satoh,
  2. Yuichiro Matsuzaki,
  3. Kosuke Kakuyanagi,
  4. Koichi Semba,
  5. Hiroshi Yamaguchi,
  6. and Shiro Saito
Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions

Towards Realizing a Quantum Memory for a Superconducting Qubit: Storage and Retrieval of quantum states

  1. Shiro Saito,
  2. Xiaobo Zhu,
  3. Robert Amsüss,
  4. Yuichiro Matsuzaki,
  5. Kosuke Kakuyanagi,
  6. Takaaki Shimo-Oka,
  7. Norikazu Mizuochi,
  8. Kae Nemoto,
  9. William J. Munro,
  10. and Kouichi Semba
We have built a hybrid system composed of a superconducting flux qubit (the processor) and an ensemble of nitrogen-vacancy centers in diamond (the memory) that can be directly coupled