both when it is free and during its interaction with the microwave pulse. As quantum logic gates are executed through pulse-qubit interaction, we study theoretically the decoherence-induced effects during the interaction, especially the variations of the pulse, under a dissipative environment with linear spectral distribution. We find that a transmissible pulse of finite width adopts an asymmetric multi-hump shape, due to the imbalanced pumping and emitting rates of the qubit during inversion when the environment is present. The pulse shape reduces to a solitonic pulse at vanishing dissipation and a pulse train at strong dissipation. We give detailed analysis of the environmental origin from both the perspectives of envelope and phase of the propagating pulse.
Pulse-qubit interaction in a superconducting circuit under frictively dissipative environment
Microwave pulses are used ubiquitously to control and measure qubits fabricated on superconducting circuits. Due to continual environmental coupling, the qubits undergo decoherence