Multiplexed photon number measurement

  1. Antoine Essig,
  2. Quentin Ficheux,
  3. Théau Peronnin,
  4. Nathanaël Cottet,
  5. Raphaël Lescanne,
  6. Alain Sarlette,
  7. Pierre Rouchon,
  8. Zaki Leghtas,
  9. and Benjamin Huard
The evolution of quantum systems under measurement is a central aspect of quantum mechanics. When a two level system — a qubit — is used as a probe of a larger system, it
naturally leads to answering a single yes-no question about the system state followed by its corresponding quantum collapse. Here, we report an experiment where a single superconducting qubit is counter-intuitively able to answer not a single but nine yes-no questions about the number of photons in a microwave resonator at the same time. The key ingredients are twofold. First, we exploit the fact that observing the color of a qubit carries additional information to the conventional readout of its state. The qubit-system interaction is hence designed so that the qubit color encodes the number of photons in the resonator. Secondly, we multiplex the qubit color observation by recording how the qubit reflects a frequency comb. Interestingly the amount of extracted information reaches a maximum at a finite drive amplitude of the comb. We evidence it by direct Wigner tomography of the quantum state of the resonator. Our experiment unleashes the full potential of quantum meters by bringing the measurement process in the frequency domain.

Sequential measurement of a superconducting qubit

  1. Théau Peronnin,
  2. Danijela Marković,
  3. Quentin Ficheux,
  4. and Benjamin Huard
We present a superconducting device that realizes the sequential measurement of a transmon qubit. The unitary evolution between system and probe is indeed separated in time and space
from the measurement of the probe itself. The device disables common limitations of dispersive readout such as Purcell effect or transients in the cavity mode by tuning the coupling to the measurement channel on demand. The probe is initially stored in a memory mode and coupled to the qubit until a microwave pump releases it into an output line in a characteristic time as low as 10 ns, which is 400 times shorter than the memory lifetime. The Wigner function of the memory allows us to characterize the non-Gaussian nature of the probe and its dynamics. A direct measurement of the released probe field quadratures demonstrates a readout fidelity of 97.5 % in a total measurement time of 220 ns.

Dynamics of an off-resonantly pumped superconducting qubit in a cavity

  1. Raphaël Lescanne,
  2. Lucas Verney,
  3. Quentin Ficheux,
  4. Michel H. Devoret,
  5. Benjamin Huard,
  6. Mazyar Mirrahimi,
  7. and Zaki Leghtas
Strong microwave drives, referred to as pumps, are widely applied to superconducting circuits incorporating Josephson junctions in order to induce couplings between electromagnetic
modes. This offers a variety of applications, from quantum-limited amplification, to quantum state and manifold stabilization. These couplings scale with the pump power, therefore, seeking stronger couplings requires a detailed understanding of the behavior of such circuits in the presence of stronger pumps. In this work, we probe the dynamics of a transmon qubit in a 3D cavity, for various pump powers and frequencies. For all pump frequencies, we find a critical pump power above which the transmon is driven into highly excited states, beyond the first seven states which we individually resolve through cavity spectroscopy. This observation is compatible with our theory describing the escape of the transmon state out of its Josephson potential well, into states resembling those of a free particle which does not induce any non-linear couplings.