Correlated errors can significantly impact the quantum error correction, which challenges the assumption that errors occur in different qubits independently in both space and time.Superconducting qubits have been found to suffer correlated errors across multiple qubits, which could be attributable to ionizing radiations and cosmic rays. Nevertheless, the direct evidence and a quantitative understanding of this relationship are currently lacking. In this work, we propose to continuously monitor multi-qubit simultaneous charge-parity jumps to detect correlated errors and find that occur more frequently than multi-qubit simultaneous bit flips. Then, we propose to position two cosmic-ray muon detectors directly beneath the sample box in a dilution refrigerator and successfully observe the correlated errors in a superconducting qubit array triggered by muons. By introducing a lead shielding layer on the refrigerator, we also reveal that the majority of other correlated errors are primarily induced by gamma rays. Furthermore, we find the superconducting film with a higher recombination rate of quasiparticles used in the qubits is helpful in reducing the duration of correlated errors. Our results provide experimental evidence of the impact of gamma rays and muons on superconducting quantum computation and offer practical insights into mitigation strategies for quantum error correction. In addition, we observe the average occurrence rate of muon-induced correlated errors in our processor is approximately 0.40 min−1cm−2, which is comparable to the muon event rate detected by the muon detector with 0.506 min−1cm−2. This demonstrates the potential applications of superconducting qubit arrays as low-energy threshold sensors in the field of high-energy physics.
The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing. Here, we propose and realize an all-microwave parametric Controlled-Z (CZ) gatesby coupling strength modulation in a superconducting Transmon qubit system with tunable couplers. After optimizing the design of the tunable coupler together with the control pulse numerically, we experimentally realized a 100 ns CZ gate with high fidelity of 99.38%±0.34% and the control error being 0.1%. We note that our CZ gates are not affected by pulse distortion and do not need pulse correction, {providing a solution for the real-time pulse generation in a dynamic quantum feedback circuit}. With the expectation of utilizing our all-microwave control scheme to reduce the number of control lines through frequency multiplexing in the future, our scheme draws a blueprint for the high-integrable quantum hardware design.
High-fidelity two-qubits gates are essential for the realization of large-scale quantum computation and simulation. Tunable coupler design is used to reduce the problem of parasiticcoupling and frequency crowding in many-qubit systems and thus thought to be advantageous. Here we design a extensible 5-qubit system in which center transmon qubit can couple to every four near-neighbor qubit via a capacitive tunable coupler and experimentally demonstrate high-fidelity controlled-phase (CZ) gate by manipulating center qubit and one near-neighbor qubit. Speckle purity benchmarking (SPB) and cross entrophy benchmarking (XEB) are used to assess the purity fidelity and the fidelity of the CZ gate. The average purity fidelity of the CZ gate is 99.69±0.04\% and the average fidelity of the CZ gate is 99.65±0.04\% which means the control error is about 0.04\%. Our work will help resovle many chanllenges in the implementation of large scale quantum systems.
Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices. In particular, the hybrid combination of superconducting circuitsand spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems. Recently, the remote coupling of nitrogen-vacancy center spins in diamond via a superconducting bus was demonstrated. However, a rigorous experimental test of the quantum nature of this hybrid system and in particular entanglement is still missing. We review the theoretical ideas to generate and detect entanglement, and present our own scheme to achieve this.
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, isa crucial for modern physics. Using a ladder-type superconducting quantum processor, we perform analog quantum simulations of both the XX ladder and one-dimensional (1D) XX model. By measuring the dynamics of local observables, entanglement entropy and tripartite mutual information, we signal quantum thermalization and information scrambling in the XX ladder. In contrast, we show that the XX chain, as free fermions on a 1D lattice, fails to thermalize, and local information does not scramble in the integrable channel. Our experiments reveal ergodicity and scrambling in the controllable qubit ladder, and opens the door to further investigations on the thermodynamics and chaos in quantum many-body systems.
We experimentally verify the simplest non-trivial case of a quantum resetting protocol with five superconducting qubits, testing it with different types of free evolutions and target-probeinteractions. After post-selection, we obtained a reset state fidelity as high as 0.951, and the process fidelity was found to be 0.792. We also implemented 100 randomly-chosen interactions and demonstrated an average success probability of 0.323, experimentally confirmed the non-zeros probability of success for unknown interactions; the numerical simulated value is 0.384. We anticipate this protocol will have widespread applications in quantum information processing science, since it is able to combat any form of free evolution.
Adiabatic quantum computing enables the preparation of many-body ground states. This is key for applications in chemistry, materials science, and beyond. Realisation poses major experimentalchallenges: Direct analog implementation requires complex Hamiltonian engineering, while the digitised version needs deep quantum gate circuits. To bypass these obstacles, we suggest an adiabatic variational hybrid algorithm, which employs short quantum circuits and provides a systematic quantum adiabatic optimisation of the circuit parameters. The quantum adiabatic theorem promises not only the ground state but also that the excited eigenstates can be found. We report the first experimental demonstration that many-body eigenstates can be efficiently prepared by an adiabatic variational algorithm assisted with a multi-qubit superconducting coprocessor. We track the real-time evolution of the ground and exited states of transverse-field Ising spins with a fidelity up that can reach about 99%.
We report the preparation and verification of a genuine 12-qubit entanglement in a superconducting processor. The processor that we designed and fabricated has qubits lying on a 1Dchain with relaxation times ranging from 29.6 to 54.6 μs. The fidelity of the 12-qubit entanglement was measured to be above 0.5544±0.0025, exceeding the genuine multipartite entanglement threshold by 21 standard deviations. Our entangling circuit to generate linear cluster states is depth-invariant in the number of qubits and uses single- and double-qubit gates instead of collective interactions. Our results are a substantial step towards large-scale random circuit sampling and scalable measurement-based quantum computing.
By driving a 3D transmon with microwave fields, we generate an effective avoided energy-level crossing. Then we chirp microwave frequency, which is equivalent to driving the systemthrough the avoided energy-level crossing by sweeping the avoided crossing. A double-passage chirp produces Landau-Zener-St\“uckelberg-Majorana interference that agree well with the numerical results. Our method is fully applicable to other quantum systems that contain no intrinsic avoided level crossing, providing an alternative approach for quantum control and quantum simulation.
We present a direct experimental observation of the correspondence between Landau-Zener transition and Kibble-Zurek mechanism with a superconducting qubit system. We develop a time-resolvedapproach to study quantum dynamics of the Landau-Zener transition. By using this method, we observe the key features of the correspondence between Landau-Zener transition and Kibble-Zurek mechanism, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region. Remarkably, the scaling behavior of the population in the excited state, an analogical phenomenon originally predicted in Kibble-Zurek mechanism, is also observed in the Landau-Zener transition.