transmon (MET) potentially offers a smaller footprint and simpler fabrication than conventional transmons. Because it concentrates the electromagnetic energy inside the junction, it reduces relative electric field participation from other interfaces. By combining micrometer-scale Al/AlOx/Al junctions with long oxidations and novel processing, we have produced functional devices with EJ/EC in the low transmon regime (EJ/EC ≲30). Cryogenic I-V measurements show sharp dI/dV structure with low sub-gap conduction. Qubit spectroscopy of tunable versions show a small number of avoided level crossings, suggesting the presence of two-level systems (TLS). We have observed mean T1 times typically in the range of 10-90 microseconds, with some annealed devices exhibiting T1 > 100 microseconds over several hours. The results suggest that energy relaxation in conventional, small-junction transmons is not limited by junction loss.
Merged-Element Transmons: Design and Qubit Performance
We have demonstrated a novel type of superconducting transmon qubit in which a Josephson junction has been engineered to act as its own parallel shunt capacitor. This merged-element