A CNOT gate between multiphoton qubits encoded in two cavities

  1. Serge Rosenblum,
  2. Yvonne Gao,
  3. Philip Reinhold,
  4. Chen Wang,
  5. Christopher Axline,
  6. Luigi Frunzio,
  7. Steven Girvin,
  8. Liang Jiang,
  9. Mazyar Mirrahimi,
  10. Michel Devoret,
  11. and Robert Schoelkopf
Entangling gates between qubits are a crucial component for performing algorithms in quantum computers. However, any quantum algorithm will ultimately have to operate on error-protected
logical qubits, which are effective qubits encoded in a high-dimensional Hilbert space. A common approach is to encode logical qubits in collective states of multiple two-level systems, but algorithms operating on multiple logical qubits are highly complex and have not yet been demonstrated. Here, we experimentally realize a controlled NOT (CNOT) gate between two multiphoton qubits in two microwave cavities. In this approach, we encode a qubit in the large Hilbert space of a single cavity mode, rather than in multiple two-level systems. We couple two such encoded qubits together through a transmon, which is driven with an RF pump to apply the CNOT gate within 190 ns. This is two orders of magnitude shorter than the decoherence time of any part of the system, enabling high-fidelity operations comparable to state-of-the-art gates between two-level systems. These results are an important step towards universal algorithms on error-corrected logical qubits.

Schrodinger’s catapult: Launching multiphoton quantum states from a microwave cavity memory

  1. Wolfgang Pfaff,
  2. Christopher J Axline,
  3. Luke D Burkhart,
  4. Uri Vool,
  5. Philip Reinhold,
  6. Luigi Frunzio,
  7. Liang Jiang,
  8. Michel H. Devoret,
  9. and Robert J. Schoelkopf
Encoding quantum states in complex multiphoton fields can overcome loss during signal transmission in a quantum network. Transmitting quantum information encoded in this way requires
that locally stored states can be converted to propagating fields. Here we experimentally show the controlled conversion of multiphoton quantum states, like „Schr\“odinger cat“ states, from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a single Josephson junction, we can release the cavity state in ~500 ns, about 3 orders of magnitude faster than its intrinsic lifetime. This `catapult‘ faithfully converts arbitrary cavity fields to traveling signals with an estimated efficiency of > 90%, enabling on-demand generation of complex itinerant quantum states. Importantly, the release process can be controlled precisely on fast time scales, allowing us to generate entanglement between the cavity and the traveling mode by partial conversion. Our system can serve as the backbone of a microwave quantum network, paving the way towards error-correctable distribution of quantum information and the transfer of highly non-classical states to hybrid quantum systems.

Implementing a Universal Gate Set on a Logical Qubit Encoded in an Oscillator

  1. Reinier W. Heeres,
  2. Philip Reinhold,
  3. Nissim Ofek,
  4. Luigi Frunzio,
  5. Liang Jiang,
  6. Michel H. Devoret,
  7. and Robert J. Schoelkopf
A logical qubit is a two-dimensional subspace of a higher dimensional system, chosen such that it is possible to detect and correct the occurrence of certain errors. Manipulation of
the encoded information generally requires arbitrary and precise control over the entire system. Whether based on multiple physical qubits or larger dimensional modes such as oscillators, the individual elements in realistic devices will always have residual interactions which must be accounted for when designing logical operations. Here we demonstrate a holistic control strategy which exploits accurate knowledge of the Hamiltonian to manipulate a coupled oscillator-transmon system. We use this approach to realize high-fidelity (99%, inferred), decoherence-limited operations on a logical qubit encoded in a superconducting cavity resonator using four-component cat states. Our results show the power of applying numerical techniques to control linear oscillators and pave the way for utilizing their large Hilbert space as a resource in quantum information processing.

A coaxial line architecture for integrating and scaling 3D cQED systems

  1. Christopher Axline,
  2. Matthew Reagor,
  3. Reinier W. Heeres,
  4. Philip Reinhold,
  5. Chen Wang,
  6. Kevin Shain,
  7. Wolfgang Pfaff,
  8. Yiwen Chu,
  9. Luigi Frunzio,
  10. and Robert J. Schoelkopf
Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss
and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

Demonstrating Quantum Error Correction that Extends the Lifetime of Quantum Information

  1. Nissim Ofek,
  2. Andrei Petrenko,
  3. Reinier Heeres,
  4. Philip Reinhold,
  5. Zaki Leghtas,
  6. Brian Vlastakis,
  7. Yehan Liu,
  8. Luigi Frunzio,
  9. S. M. Girvin,
  10. Liang Jiang,
  11. Mazyar Mirrahimi,
  12. M. H. Devoret,
  13. and R. J. Schoelkopf
The remarkable discovery of Quantum Error Correction (QEC), which can overcome the errors experienced by a bit of quantum information (qubit), was a critical advance that gives hope
for eventually realizing practical quantum computers. In principle, a system that implements QEC can actually pass a „break-even“ point and preserve quantum information for longer than the lifetime of its constituent parts. Reaching the break-even point, however, has thus far remained an outstanding and challenging goal. Several previous works have demonstrated elements of QEC in NMR, ions, nitrogen vacancy (NV) centers, photons, and superconducting transmons. However, these works primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to extend the lifetime of quantum information over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of coherent states, or cat states of a superconducting resonator. Moreover, the experiment implements a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode, and correct. As measured by full process tomography, the enhanced lifetime of the encoded information is 320 microseconds without any post-selection. This is 20 times greater than that of the system’s transmon, over twice as long as an uncorrected logical encoding, and 10% longer than the highest quality element of the system (the resonator’s 0, 1 Fock states). Our results illustrate the power of novel, hardware efficient qubit encodings over traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming the basic concepts to exploring the metrics that drive system performance and the challenges in implementing a fault-tolerant system.

Surface participation and dielectric loss in superconducting qubits

  1. Chen Wang,
  2. Christopher Axline,
  3. Yvonne Y. Gao,
  4. Teresa Brecht,
  5. Luigi Frunzio,
  6. Michel H. Devoret,
  7. and Robert J. Schoelkopf
We study the energy relaxation times (T1) of superconducting transmon qubits in 3D cavities as a function of dielectric participation ratios of material surfaces. This surface participation
ratio, representing the fraction of electric field energy stored in a dissipative surface layer, is computed by a two-step finite-element simulation and experimentally varied by qubit geometry. With a clean electromagnetic environment and suppressed non-equilibrium quasiparticle density, we find an approximately proportional relation between the transmon relaxation rates and surface participation ratios. These results suggest dielectric dissipation arising from material interfaces is the major limiting factor for the T1 of transmons in 3D cQED architecture. Our analysis also supports the notion of spatial discreteness of surface dielectric dissipation.

Comparing and combining measurement-based and driven-dissipative entanglement stabilization

  1. Yehan Liu,
  2. Shyam Shankar,
  3. Nissim Ofek,
  4. Michael Hatridge,
  5. Anirudh Narla,
  6. Katrina Sliwa,
  7. Luigi Frunzio,
  8. Robert J. Schoelkopf,
  9. and Michel H. Devoret
We demonstrate and contrast two approaches to the stabilization of qubit entanglement by feedback. Our demonstration is built on a feedback platform consisting of two superconducting
qubits coupled to a cavity which are measured by a nearly-quantum-limited measurement chain and controlled by high-speed classical logic circuits. This platform is used to stabilize entanglement by two nominally distinct schemes: a „passive“ reservoir engineering method and an „active“ correction based on conditional parity measurements. In view of the instrumental roles that these two feedback paradigms play in quantum error-correction and quantum control, we directly compare them on the same experimental setup. Further, we show that a second layer of feedback can be added to each of these schemes, which heralds the presence of a high-fidelity entangled state in realtime. This „nested“ feedback brings about a marked entanglement fidelity improvement without sacrificing success probability.

A quantum memory with near-millisecond coherence in circuit QED

  1. Matthew Reagor,
  2. Wolfgang Pfaff,
  3. Christopher Axline,
  4. Reinier W. Heeres,
  5. Nissim Ofek,
  6. Katrina Sliwa,
  7. Eric Holland,
  8. Chen Wang,
  9. Jacob Blumoff,
  10. Kevin Chou,
  11. Michael J. Hatridge,
  12. Luigi Frunzio,
  13. Michel H. Devoret,
  14. Liang Jiang,
  15. and Robert J. Schoelkopf
Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent
quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.

Violating Bell’s inequality with an artificial atom and a cat state in a cavity

  1. Brian Vlastakis,
  2. Andrei Petrenko,
  3. Nissim Ofek,
  4. Luayn Sun,
  5. Zaki Leghtas,
  6. Katrina Sliwa,
  7. Yehan Liu,
  8. Michael Hatridge,
  9. Jacob Blumoff,
  10. Luigi Frunzio,
  11. Mazyar Mirrahimi,
  12. Liang Jiang,
  13. M. H. Devoret,
  14. and R. J. Schoelkopf
The `Schr“odinger’s cat‘ thought experiment highlights the counterintuitive facet of quantum theory that entanglement can exist between microscopic and macroscopic
systems, producing a superposition of distinguishable states like the fictitious cat that is both alive and dead. The hallmark of entanglement is the detection of strong correlations between systems, for example by the violation of Bell’s inequality. Using the CHSH variant of the Bell test, this violation has been observed with photons, atoms, solid state spins, and artificial atoms in superconducting circuits. For larger, more distinguishable states, the conflict between quantum predictions and our classical expectations is typically resolved due to the rapid onset of decoherence. To investigate this reconciliation, one can employ a superposition of coherent states in an oscillator, known as a cat state. In contrast to discrete systems, one can continuously vary the size of the prepared cat state and therefore its dependence on decoherence. Here we demonstrate and quantify entanglement between an artificial atom and a cat state in a cavity, which we call a `Bell-cat‘ state. We use a circuit QED architecture, high-fidelity measurements, and real-time feedback control to violate Bell’s inequality without post-selection or corrections for measurement inefficiencies. Furthermore, we investigate the influence of decoherence by continuously varying the size of created Bell-cat states and characterize the entangled system by joint Wigner tomography. These techniques provide a toolset for quantum information processing with entangled qubits and resonators. While recent results have demonstrated a high level of control of such systems, this experiment demonstrates that information can be extracted efficiently and with high fidelity, a crucial requirement for quantum computing with resonators.

Cavity State Manipulation Using Photon-Number Selective Phase Gates

  1. Reinier W. Heeres,
  2. Brian Vlastakis,
  3. Eric Holland,
  4. Stefan Krastanov,
  5. Victor V. Albert,
  6. Luigi Frunzio,
  7. Liang Jiang,
  8. and Robert J. Schoelkopf
The large available Hilbert space and high coherence of cavity resonators makes these systems an interesting resource for storing encoded quantum bits. To perform a quantum gate on
this encoded information, however, complex nonlinear operations must be applied to the many levels of the oscillator simultaneously. In this work, we introduce the Selective Number-dependent Arbitrary Phase (SNAP) gate, which imparts a different phase to each Fock state component using an off-resonantly coupled qubit. We show that the SNAP gate allows control over the quantum phases by correcting the unwanted phase evolution due to the Kerr effect. Furthermore, by combining the SNAP gate with oscillator displacements, we create a one-photon Fock state with high fidelity. Using just these two controls, one can construct arbitrary unitary operations, offering a scalable route to performing logical manipulations on oscillator-encoded qubits.