idealized as two-level qubits, drawing powerful analogies to quantum spin models. For a charge qubit that is capacitively coupled to a transmission line, this analogy leads to the celebrated spin-boson description of quantum dissipation. We put here into evidence a failure of the two-level paradigm for realistic superconducting devices, due to electrostatic constraints which limit the maximum strength of dissipation. These prevent the occurence of the spin-boson quantum phase transition for transmons, even up to relatively large non-linearities. A different picture for the many-body ground state describing strongly dissipative transmons is proposed, showing unusual zero point fluctuations.
Absence of spin-boson quantum phase transition for transmon qubits
Superconducting circuits are currently developed as a versatile platform for the exploration of many-body physics, both at the analog and digital levels. Their building blocks are often