The realization of robust universal quantum computation with any platform ultimately requires both the coherent storage of quantum information and (at least) one entangling operationbetween individual elements. The use of continuous-variable bosonic modes as the quantum element is a promising route to preserve the coherence of quantum information against naturally-occurring errors. However, operations between bosonic modes can be challenging. In analogy to the exchange interaction between discrete-variable spin systems, the exponential-SWAP unitary [UE(θc)] can coherently transfer the states between two bosonic modes, regardless of the chosen encoding, realizing a deterministic entangling operation for certain θc. Here, we develop an efficient circuit to implement UE(θc) and realize the operation in a three-dimensional circuit QED architecture. We demonstrate high-quality deterministic entanglement between two cavity modes with several different encodings. Our results provide a crucial primitive necessary for universal quantum computation using bosonic modes.
High-fidelity qubit measurements play a crucial role in quantum computation, communication, and metrology. In recent experiments, it has been shown that readout fidelity may be improvedby performing repeated quantum non-demolition (QND) readouts of a qubit’s state through an ancilla. For a qubit encoded in a two-level system, the fidelity of such schemes is limited by the fact that a single error can destroy the information in the qubit. On the other hand, if a bosonic system is used, this fundamental limit could be overcome by utilizing higher levels such that a single error still leaves states distinguishable. In this work, we present a robust readout scheme, applicable to bosonic systems dispersively coupled to an ancilla, which leverages both repeated QND readouts and higher-level encodings to asymptotically suppress the effects of qubit/cavity relaxation and individual measurement infidelity. We calculate the measurement fidelity in terms of general experimental parameters, provide an information-theoretic description of the scheme, and describe its application to several encodings, including cat and binomial codes.
Modular quantum computing architectures require fast and efficient distribution of quantum information through propagating signals. Here we report rapid, on-demand quantum state transferbetween two remote superconducting cavity quantum memories through traveling microwave photons. We demonstrate a quantum communication channel by deterministic transfer of quantum bits with 76% fidelity. Heralding on errors induced by experimental imperfection can improve this to 87% with a success probability of 0.87. By partial transfer of a microwave photon, we generate remote entanglement at a rate that exceeds photon loss in either memory by more than a factor of three. We further show the transfer of quantum error correction code words that will allow deterministic mitigation of photon loss. These results pave the way for scaling superconducting quantum devices through modular quantum networks.
Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as „cat states“, have been an elegant demonstration of Schrodinger’sfamous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum non-demolition measurements of the joint photon number parity. The ability to manipulate such multi-cavity quantum states paves the way for logical operations between redundantly encoded qubits for fault-tolerant quantum computation and communication.
Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherentquantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.