Electromagnetic fields possess zero point fluctuations (ZPF) which lead to observable effects such as the Lamb shift and the Casimir effect. In the traditional quantum optics domain,these corrections remain perturbative due to the smallness of the fine structure constant. To provide a direct observation of non-perturbative effects driven by ZPF in an open quantum system we wire a highly non-linear Josephson junction to a high impedance transmission line, allowing large phase fluctuations across the junction. Consequently, the resonance of the former acquires a relative frequency shift that is orders of magnitude larger than for natural atoms. Detailed modelling confirms that this renormalization is non-linear and quantum. Remarkably, the junction transfers its non-linearity to about 30 environmental modes, a striking back-action effect that transcends the standard Caldeira-Leggett paradigm. This work opens many exciting prospects for longstanding quests such as the tailoring of many-body Hamiltonians in the strongly non-linear regime, the observation of Bloch oscillations, or the development of high-impedance qubits.
We report on the fabrication and characterization of 50 Ohms, flux-tunable, low-loss, SQUID-based transmission lines. The fabrication process relies on the deposition of a thin dielectriclayer (few tens of nanometers) via Atomic Layer Deposition (ALD) on top of a SQUID array, the whole structure is then covered by a non-superconducting metallic top ground plane. We present experimental results from five different samples. We systematically characterize their microscopic parameters by measuring the propagating phase in these structures. We also investigate losses and discriminate conductor from dielectric losses. This fabrication method offers several advantages. First, the SQUID array fabrication does not rely on a Niobium tri-layer process but on a simpler double angle evaporation technique. Second, ALD provides high quality dielectric leading to low-loss devices. Further, the SQUID array fabrication is based on a standard, all-aluminum process, allowing direct integration with superconducting qubits. Moreover, our devices are in-situ flux tunable, allowing mitigation of incertitude inherent to any fabrication process. Finally, the unit cell being a single SQUID (no extra ground capacitance is needed), it is straightforward to modulate the size of the unit cell periodically, allowing band-engineering. This fabrication process can be directly applied to traveling wave parametric amplifiers.