Characterization and Optimization of Tunable Couplers via Adiabatic Control in Superconducting Circuits

  1. Xuan Zhang,
  2. Xu Zhang,
  3. Changling Chen,
  4. Kai Tang,
  5. Kangyuan Yi,
  6. Kai Luo,
  7. Zheshu Xie,
  8. Yuanzhen Chen,
  9. and Tongxing Yan
In the pursuit of scalable superconducting quantum computing, tunable couplers have emerged as a pivotal component, offering the flexibility required for complex quantum operations
of high performance. In most current architectures of superconducting quantum chips, such couplers are not equipped with dedicated readout circuits to reduce complexity in both design and operation. However, this strategy poses challenges in precise characterization, calibration, and control of the couplers. In this work, we develop a hardware-efficient and robust technique based on adiabatic control to address the above issue. The critical ingredient of this technique is adiabatic swap (aSWAP) operation between a tunable coupler and nearby qubits. Using this technique, we have characterized and calibrated tunable couplers in our chips and achieved straightforward and precise control over these couplers. For example, we have demonstrated the calibration and correction of the flux distortion of couplers. In addition, we have also expanded this technique to tune the dispersive shift between a frequency-fixed qubit and its readout resonator over a wide range.

Floquet Engineering of Anisotropic Transverse Interactions in Superconducting Qubits

  1. Yongqi Liang,
  2. Wenhui Huang,
  3. Libo Zhang,
  4. Ziyu Tao,
  5. Kai Tang,
  6. Ji Chu,
  7. Jiawei Qiu,
  8. Xuandong Sun,
  9. Yuxuan Zhou,
  10. Jiawei Zhang,
  11. Jiajian Zhang,
  12. Weijie Guo,
  13. Yang Liu,
  14. Yuanzhen Chen,
  15. Song Liu,
  16. Youpeng Zhong,
  17. Jingjing Niu,
  18. and Dapeng Yu
Superconducting transmon qubits have established as a leading candidate for quantum computation, as well as a flexible platform for exploring exotic quantum phases and dynamics. However,
physical coupling naturally yields isotropic transverse interactions between qubits, restricting their access to diverse quantum phases that require spatially dependent interactions. Here, we demonstrate the simultaneous realization of both pairing (XX-YY) and hopping (XX+YY) interactions between transmon qubits by Floquet engineering. The coherent superposition of these interactions enables independent control over the XX and YY terms, yielding anisotropic transverse interactions. By aligning the transverse interactions along a 1D chain of six qubits, as calibrated via Aharonov-Bohm interference in synthetic space, we synthesize a transverse field Ising chain model and explore its dynamical phase transition under varying external field. The scalable synthesis of anisotropic transverse interactions paves the way for the implementation of more complex physical systems requiring spatially dependent interactions, enriching the toolbox for engineering quantum phases with superconducting qubits.

Hardware-Efficient Stabilization of Entanglement via Engineered Dissipation in Superconducting Circuits

  1. Changling Chen,
  2. Kai Tang,
  3. Yuxuan Zhou,
  4. KangYuan Yi,
  5. Xuan Zhang,
  6. Xu Zhang,
  7. Haosheng Guo,
  8. Song Liu,
  9. Yuanzhen Chen,
  10. Tongxing Yan,
  11. and Dapeng Yu
Generation and preservation of quantum entanglement are among the primary tasks in quantum information processing. State stabilization via quantum bath engineering offers a resource-efficient
approach to achieve this objective. However, current methods for engineering dissipative channels to stabilize target entangled states often require specialized hardware designs, complicating experimental realization and hindering their compatibility with scalable quantum computation architectures. In this work, we propose and experimentally demonstrate a stabilization protocol readily implementable in the mainstream integrated superconducting quantum circuits. The approach utilizes a Raman process involving a resonant (or nearly resonant) superconducting qubit array and their dedicated readout resonators to effectively emerge nonlocal dissipative channels. Leveraging individual controllability of the qubits and resonators, the protocol stabilizes two-qubit Bell states with a fidelity of 90.7%, marking the highest reported value in solid-state platforms to date. Furthermore, by extending this strategy to include three qubits, an entangled W state is achieved with a fidelity of 86.2%, which has not been experimentally investigated before. Notably, the protocol is of practical interest since it only utilizes existing hardware common to standard operations in the underlying superconducting circuits, thereby facilitating the exploration of many-body quantum entanglement with dissipative resources.